Monitoring of the irrigated rice production dynamic in the Kazalinsk region, Kazakhstan, from 1984-2017

Olga Degtyareva1, Nadiya Muratova2, Vitaly Salnikov2, Michael Thiel3*

1 National Center of Space Research and Technology, Kazakhstan, Almaty, 15 Shevchenko str, 050010

2 Research Institute of Ecology problems of the Al-Farabi’s Kazakh National University, Kazakhstan, Almaty, 71 Al-Farabi av., 050040

3 Remote Sensing Unit, Institute of Geography and Geology, University of Würzburg, Oswald-Külpe-Weg 86, 97074 Würzburg, Germany

*Corresponding author: michael.thiel@uni-wuerzburg.de

Olga Degtyareva: degtyar@issp.ac.ru; Nadiya Muratova: nmuratova@mail.ru; Vitaly Salnikov: vitali.salnikov@kaznu.kz

https://doi.org/10.29258/CAJWR/2019-R1.v5-2/20-43.eng

Scientific Article

Abstract

In the most downstream irrigation system along the Syrdarya River in the Kazalinsk region (Republic of Kazakhstan), the run-down water supplying system and widespread cropland degradation challenge the agricultural production, which is mainly dedicated to the growing of rice. To understand the development of the production system in that ecologically endangered region, this study aims at the generation and analysis of an inventory of agricultural land use, with a focus on rice cultivation. The unsupervised k-means classifier was utilized for the generation of annual rice masks of the Kazalinsk region based on Landsat images from 1984 to 2017. Three indicators derived from the rice masks served for the analysis of the spatial pattern and the trend of rice cropping intensity and land abandonment. Finally, drivers of the identified spatial patterns of rice cropping intensity (1984-2017) were modeled by applying regression tree analysis. The rice classification returned 91.6% overall accuracy for independent Google Earth samplings of 2004 and 2011. During the study period, the area under annual rice cultivation declined from 20,737 ha towards 10,828 ha. However, after 2004 (5,015 ha) the area under rice cultivation increased again and abandoned fields experienced reclamation. Mainly those parts of the irrigation system have been intensively used for rice production where fields occur in agglomerations. This practice can be assessed as economic indicator for the reduction of production costs (reduced irrigation efforts and logistics for field preparation, and other management activities) by the rice growers. The developed approach is applicable in the future and may be utilized to map abandoned agricultural fields and to identify drivers of land abandonment and cropland reclamation in the region.

Download the article

For citation: Degtyareva, O., Muratova, N., Salnikov, V., & Thiel, M. (2019). Monitoring of the irrigated rice production dynamic in the Kazalinsk region, Kazakhstan, from 1984-2017. Central Asian Journal of Water Research, 5(2), 20–43. https://doi.org/10.29258/cajwr/2019-r1.v5-2/20-43.eng

References

  1. Abuov K., Kovalenko V., Rakishev A., Makhambetov A., Ibraev A., 1967, Recommendations for the agriculture system Kizilordinskaya oblast. Alma-Ata, 275 p.
  2. Alcantara, C., Kuemmerle, T., Prishchepov, A.V., Radeloff, V.C., 2012, Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, Vol. 124, pp. 334–347. Available at: http://doi.org/10.1016/j.rse.2012.05.019.
  3. Breiman, L. Fiedman, J.H., Olshen, R.A., Stone, C.J., 1984, Classification and Regression Trees. Belmont. (Belmont, CA: Wadsworth International Group).
  4. Congalton, R.G., 1991, A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, Vol. 37, No. 1, pp. 35-46.
  5. Conrad, C., Schönbrodt-Stiff, S., Löw, F., Sorokin, D., Paeth, H., 2016a, Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000–2012. Remote Sensing, Vol. 8, No. 630, 26p.
  6. Conrad, C., Lamers, J.P.A., Ibragimov, N., Löw, F., Martius, C., 2016b, Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use, Journal of Arid Environments, Vol. 124, pp. 150-159.
  7. Dangour, A.D., Farmer, A., Hill, H.L., Ismail, S.J., 2003, Anthropometric Status of Kazakh Children in the 1990s. Economics and Human Biology, Vol. 1, No. 1, pp.43-53.
  8. Dubovyk, O., Menz, G., Conrad, C., Kan, E., Machwitz, M., Khamzina, A., 2013, Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environmental Monitoring and Assessment, Vol. 185, No. 6, pp. 4775–4790. Available at: https://doi.org/10.1007/s10661-012-2904-6.
  9. Elert E. A., 2014, Good grain. Nature, Vol. 514, pp. 50–51.
  10. Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., Hostert, P., 2015, Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, Vol. 163, pp. 312–325.
  11. Funakawa, S., Suzuki, R., Karbozova, E., Kosaki, T., Ishida, N., 2000,. Salt-affected soils under rice-based irrigation agriculture in southern Kazakhstan. Geoderma, Vol. 97, No. 1–2, pp. 61–85. Available at: https://doi.org/10.1016/S0016-7061(00)00026-4.
  12. Goskomstat. 1996. Goskomstat (State Committee on Statistics of the Republic of Kazakhstan). Annual Demographical Book of Kazakhstan. Goskomstat, Almaty.
  13. Gumma, M. K., Nelson, A., Thenkabail, P., Singh, A.N., 2011, Mapping rice areas of South Asia using MODIS multitemporal data. Journal of Applied Remote Sensing, Vol. 5, 053547-1-053547-26.
  14. Gupta, R., Kienzler, K., Martius, C., Mirzabaev, A., Oweis, T., de Pauw, E., Qadir, M., Shideed, K., Sommer, R., Thomas, R., Sayre, K., Carli, C., Saparov, A., Bekenov, M., Sanginov, S., Nepesov, M., Ikramov, R., 2009, Research Prospectus: A Vision for Sustainable Land Management Research in Central Asia. ICARDA Central Asia and Caucasus Program. Sustainable Agriculture in Central Asia and the Caucasus Series No.1. CGIAR-PFU, Tashkent, Uzbekistan. 84 pp.
  15. Institute of Geography, 2010a, The National Atlas of the Republic of Kazakhstan. Social-economic development vol. II., Almaty, Kazakhstan, 163 p.
  16. Institute of Geography, 2010b, The National Atlas of the Republic of Kazakhstan. Natural conditions and resources Vol. I., Almaty, Kazakhstan, 149 p.
  17. KDS, 2009, Agriculture, Agriculture Kyzylorda region in 2003-2009 (Sel’skoe, Lesnoe i rybnoe Hozjajstvo Kyzylordinskoj Oblasti 2003-2009) (Kyzyl-Orda: Kyzyl-Orda Department of Statistics). [in Russian].
  18. KDS, 2013, Agriculture, Agriculture Kyzylorda region in 2009-2013 (Selskoe, Lesnoe i rybnoe Hozjajstvo Kyzylordinskoj Oblasti 2009-2013) (Kyzyl-Orda: Kyzyl-Orda Department of Statistics). [in Russian].
  19. KDS, 2014, Agriculture, Gross harvest of agricultural crops in Kyzylorda region in 2014 Volume III. productivity (Selskoe, Lesnoe i rybnoe Hozjajstvo Kyzylordinskoj Oblasti 2014) (Kyzyl-Orda: Kyzyl-Orda Department of Statistics). [in Russian].
  20. KDS, 2015, Agriculture, Gross harvest of agricultural crops in Kyzylorda region in 2015 Volume III. productivity (Selskoe, Lesnoe i rybnoe Hozjajstvo Kyzylordinskoj Oblasti 2015) (Kyzyl-Orda: Kyzyl-Orda Department of Statistics). [in Russian].
  21. KDS, 2016, Agriculture, Gross harvest of agricultural crops in Kyzylorda region in 2016 Volume III. productivity (Selskoe, Lesnoe i rybnoe Hozjajstvo Kyzylordinskoj Oblasti 2016) (Kyzyl-Orda: Kyzyl-Orda Department of Statistics). [in Russian].
  22. Khush G.S., 2005, What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, Vol. 59, pp. 1–6.
  23. Künzer, C., Knauer, K., 2013, Remote sensing of rice crop areas. International Journal of Remote Sensing, Vol. 34, No. 6, pp. 2101–2139. Available at: https://doi.org/10.1080/01431161.2012.738946.
  24. Löw, F., Fliemann, E., Iskandar Abdullaev, I., Conrad, C., Lamers, J.P.A., 2015, Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, Vol. 62, pp. 377-390.
  25. Martínez-Casasnovas, J.A., Martín-Montero, A., Auxiliadora Casterad, M., 2005, Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images. European Journal of Agronomy, Vol. 23, pp. 159–169.
  26. Prishchepov, A.V., Radeloff, V.C., Dubinin, M., Alcantara, C., 2012, The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment, Vol. 126, pp. 195–209.
  27. Qadir, M., Noble, A.D., Qureshi, A.S., Gupta, R.K., Yuldashev, T., Karimov, A., 2009, Salt induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia. Natural Resources Forum, Vol. 33, No. 2, pp. 134–149. Available at: https://doi.org/10.1111/j.1477-8947.2009.01217.x.
  28. R Development Core Team, 2012, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  29. Siebert, S., Portmann, F.T., Döll, P., 2010, Global patterns of cropland use intensity. Remote Sensing, Vol. 2, No. 7, pp. 1625–1643. Available at: https://doi.org/10.3390/rs2071625.
  30. Stefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V., Knorn, J., Korol, N., Sieber, A., and Waske, B., 2014. Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data. Remote Sensing, Vol. 6, No. 6, pp. 5279–5305. Available at: http://doi.org/10.3390/rs6065279.
  31. Tian, H., Wu, M., Wang, L., Niu, Z., 2018, Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors (Basel, Switzerland), Vol. 18, No. 1, p. 185. Available at: http://doi.org/10.3390/s18010185.
  32. Tischbein, B., Manschadi, A.M., Conrad, C., Hornidge, A.-K., Bhaduri, A., Hassan, M.M.U., Lamers, J.P.A., Awan, U.K., and Vlek, P.L.G., 2013, Adapting to water scarcity: Constraints and opportunities for improving irrigation management in Khorezm, Uzbekistan. Water Science and Technology: Water Supply, Vol. 13, No. 2. Available at: https://doi.org/10.2166/ws.2013.028.
  33. Tou, J.T. and Gonzalez, R.C., 1974, Pattern Recognition Principles, Addison-Wesley Publishing Company, Reading, Massachusetts.
  34. Unger-Shayesteh, K., Conrad, C., Schöne, T., Moldobekov, B., 2015, Informed Decision-Making in Land and Water Management in Central Asia: How Earth Observation Technologies may contribute. Policy Briefs of the German Water Initiative for Central Asia ; 1, Potsdam: GFZ German Research Centre for Geosciences, 6 p., Available at: http://doi.org/10.2312/5.4.2015.001e
  35. van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013, Yield gap analysis with local to global relevance — A review. Field Crops Research, Vol. 143, pp. 4–17. Available at: https://doi.org/10.1016/j.fcr.2012.09.009.
  36. World Bank, 2018, Climate Change Knowledge Portal – For Development Practitioners and Policy Makers. Available at: https://data.worldbank.org/country/uzbekistan. Assessed: 12.09.2018.

aral sea basin, driver analysis, kazalinsk region, land use change, remote sensing time series, rice cropping intensity