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Assessing water quality in a distribution network based on 
hydraulic conditions 

Tomperi J.a 

 a University of Oulu, Pentti Kaiteran katu 1, Oulu, 90570, Finland

ABSTRACT
Abnormalities in hydraulic conditions inside a water distribution 
network are strongly related to the deterioration of drinking 
water quality. Leaking pipes and valves cause changes to the 
hydraulic conditions and allow the entry of impurities into 
the distribution system. Sudden flow and pressure shocks 
can detach soft deposits and biofilms from the pipe surface, 
resulting in deterioration of water quality. Online water quality 
measurements in a distribution network are scarce, but more 
common online flow and pressure measurements reveal the 
changes in hydraulic conditions in a distribution network 
and can be utilized to assess the water quality continuously 
and near real-time via modelling. Here, a data-driven model 
based solely on the online flow and pressure measurements in 
a distribution network for assessing the water quality at the 
end of an urban district metered area is presented. With the 
accuracy of R2 0.77, the developed data-driven model is able to 
assess the level of and the changes in potable water quality in 
a non-laborious and cost-effective way, also enabling proactive 
operations to ensure the distribution of high-quality drinking 
water to the consumers.
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1. Introduction

Providing potable water with appropriate quality and quantity through the 
water supply system, the infrastructure that collects, treats, stores, and distributes 
water between the raw water sources and consumers’ taps, is essential for the 
general well-being and health. In addition to potential health-related risks, extra 
financial costs and energy consumption occur when potable water is contaminated. 
Disturbances in potable water quality are most commonly dealt with in a reactive 
way by the water company, i.e., by cleaning parts of the distribution network (water 
flushing, water/air scouring, and swabbing/pigging) (Vreeburg & Boxall, 2007) and 
providing clean water for consumers using tanker trucks, etc. The deterioration of 
potable water quality strongly relates to problems in a water treatment process 
or abnormalities and sudden changes in the hydraulic conditions inside a water 
distribution network (WDN) (Clark & Haught, 2005).

In a WDN, microbiological growth, the re-suspension, and mobilization of 
precipitation, or breakdown of pipes and valves allowing the entry of particles 
and microbes, can deteriorate the water quality. When distributing potable water, 
biofilms will inevitably grow on the inner surfaces of the pipes, and soft deposits 
consisting of organic and inorganic matter and several metals will accumulate in 
the pipelines. Rapid changes in water flow or pressure can detach the biofilms and 
soft deposits from the surfaces of the pipes and deteriorate the water quality, which 
is shown, among others as the elevated concentrations of bacteria, metals, and 
turbidity in water (Lehtola et al., 2006b). Mustonen et al. (2008) found that pressure 
shocks temporarily increase the number of particles, turbidity, and electrical 
conductivity in water. The rapid change in the flow creates high shear stresses which 
cause particle mobilization from sediments and biofilms along the pipe affecting the 
water quality. The mobilization occurs in the first dynamic surge of the transient. 
The events causing the water quality deterioration may be rapid and occur over a 
short time. The changes in water quality typically have characteristics of a sharp 
rise that reduces within a few hours (Vreeburg & Boxall, 2007). New insight into how 
the hydraulic transients, that occur within drinking water distribution networks, can 
mobilize material adhered to the pipe wall and hence cause unacceptable water 
quality, and customer dissatisfaction is provided by Weston et al. (2021). In addition, 
unsteady hydraulic conditions can lead to a significant impact on the disinfectant 
residual as a significant decay in the disinfectant residual is attributed to the 
mobilization and entrainment of particles and biofilms, which affect the bulk and 
wall reactions during the unsteady hydraulic conditions (Aisopou et al., 2012). The 
lack of pressure and slow water flow lead to long detention times, increasing the 
biofilm growth and bacterial regrowth, which may ultimately lead to water-borne 
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diseases as the long travel and detention times contribute to the loss of disinfection 
residual. Long detention times are a significant contributing factor in the formation 
of disinfection by-products (DBPs), which are formed when the disinfectant reacts 
with organic and inorganic substances in water. Many DBPs have toxic properties and 
can be mutagenic and genotoxic. (Clark & Haught, 2005; Ghebremichael et al., 2008; 
Mains, 2008; Li, 2017; Manasfi, 2017)

Properties that affect the water quality can be physical, chemical, or biological 
factors. Turbidity is one of the critical water quality parameters in environmental 
monitoring, industrial process operation, and water treatment and distribution. 
Turbidity, an optical measure of clarity describing the physical transparency of 
liquid, and total suspended solids in water are strongly related. Still, turbidity 
is not a direct measurement of the total suspended materials in water as other 
factors also affect the measured turbidity value (Tomperi et al., 2022). In a water 
distribution system, suspended particles that cause the water turbidity are usually 
from raw water sources due to inadequate water treatment or from re-suspension 
of sediments in a distribution system. Turbidity and water flow are causally related 
as the high flow prevents particles from settling, and significant changes in velocity 
can increase turbidity and corrosion in the distribution system (Chapman, 1996). 
Despite its unpleasant appearance, turbid water is not harmful to health. Still, the 
increase in turbidity can often indicate potential pollution as pollutants such as 
dissolved metals and pathogens can attach to suspended particles. The number of 
bacteria in water correlates with the turbidity and the number of particles in water 
(Lehtola et al., 2006a). High turbidity also hinders the effect of disinfection, and the 
suspended particles can carry impurities, protect microorganisms from the effects of 
disinfection and stimulate bacterial growth. (Chapman, 1996; Anderson, 2005; WHO, 
2008; Mukundan et al., 2013)

Typically, water utilities monitor the quality of potable water daily. Still, the 
monitoring is often carried out by manual sampling and laboratory analysis, and 
only at a few key locations of the WDN, as mounting and maintaining online sensors 
for water quality monitoring in an old WDN is laborious and expensive. Laboratory 
analyses are also expensive and time-consuming, and the results always present the 
past. Therefore, the current commonly used water quality monitoring frequency and 
broadness are not sufficient to detect abrupt and transient events in real time nor 
discovering the slow and long-term changes in the water quality in a wide district 
metered area (DMA). Often the deterioration of water quality is noticed by the 
customers. Hence, there is lack of important real-time information on the state of 
the water quality and the conditions of the network in wide parts of the WDN. On 
the other hand, water distribution networks include at least some amount of online 
pressure and flow measurements, which show the hydraulic conditions continuously 
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and in real-time. It is advisable to utilize this existing information via a modelling 
approach to increase the knowledge on water quality at the parts of a distribution 
network where no stand-alone water quality measurements are available, with a 
faster and more cost-effective way against the laboratory analysis.

Several water quality models have been developed for design and operational 
management purposes and to help ascertain the quality of potable water in the 
water distribution systems. For example, an integrated pressure-dependent hydraulic 
model based on the well-known Epanet 2 model was used to simulate the operating 
condition, including normal and subnormal pressure (Seyoum & Tanyimboh, 2013). 
A full-scale hydraulic model of the whole water supply system was built by Sunela 
& Puust (2015) using an extended version of EPANET including simulated quality 
parameter modeling. On the other hand, a data-driven turbidity forecasting method 
capable of aiding operational staff and enabling proactive management strategies 
was developed by Meyers et al. (2017). Development of a hydraulic model includes 
many challenges as they require detailed information on the distribution network 
and may therefore include some assumptions which cause uncertainties to the model 
performance. Significant spatial and temporal variations in hydraulic conditions can 
occur inside the water distribution network. While the pressure is nearly constant 
in stable conditions, the water flow rate varies within a day, from day to day and 
season to season. The dynamic behavior poses challenges as the water usage is 
time-dependent and tied to the type of water users, for example, residential or 
industrial. In addition, the development and maintenance of hydraulic models are 
time-consuming and expensive. Data-driven models, on the other hand, require 
only the measured data, and therefore they present more accurately the current 
situation. However, the accuracy of the data-driven model strongly depends on the 
quality of measured data and the selected model variables.

In this paper, the development of a data-driven model for assessing the water 
quality, namely  turbidity, in an urban distribution network is presented. Water 
turbidity in the end part of the DMA is modelled based on only the online hydraulic 
condition measurements along the early part of the WDN. The presented work is 
a revision for the unfinished work introduced in Tomperi (2020). With the simple 
data-driven modelling approach, the water quality information is provided in a non-
laborious and cost-effective way utilizing the exiting measurement data. The received 
water quality information could be utilized as an early warning of changes and for 
proactive management strategies by operation personnel to ensure the distribution 
of high-quality potable water. 
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2. Material and Methods

2.1. The research site and collected data
The site of this research work was an urban DMA, where several online 

monitoring stations were mounted along with the water distribution system (Figure 
1), including a raw water source pumping station (marked as I), pressure increase 
pumping stations along with the DMA, and distribution pipelines at the length of 
tens of kilometers. For confidential reasons, the exact locations or detailed map of 
the DMA cannot be presented here. Hydraulic condition parameters were monitored 
in several places (marked as circles), and the water quality measurements were 
performed at two locations: at a raw water pumping station (marked as I) and one 
monitoring station at the end part of the distribution network (marked as O). Water 
quality measurements were performed with YSI 6920V2, multi-parameter probes for 
continuous water quality monitoring, which included turbidity, dissolved oxygen, 
oxygen reduction potential, pH, salinity, specific conductivity, and temperature 
sensors. Water quality and hydraulic conditions data were collected from the WDN 
during two separate campaigns, in spring/early summer, and in fall, covering in total 
data from a period of circa 120 days. The data were initially logged at a minute 
interval but were averaged for this research.

Figure 1. A rough illustration of the WDN and the measurement locations.

2.2. Data analysis and modelling
Datasets generally include irrelevant variables to develop a model for a 

specific purpose. Selecting the proper amount and the optimal input variables for 
a model from a large variable set is one of the crucial steps in model development. 
Too few input variables or noisy and uninformative variables lead to a model with 
poor performance. On the other hand, using too many input variables increases 
the risk of developing an over-fitted model with excellent training results but poor 
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prediction abilities with new data. The selection can be done manually or using 
various automated variable selection methods. In this research, a combination of 
expert knowledge and a stepwise regression method was used to select the optimal 
input variables for the water quality model. Stepwise regression is a modified forward 
selection method, which adds the best variable to or deletes the worst variable from 
a variable subset at each round. Adding and deleting are based on the variable’s 
statistical significance in regression. It starts with an initial model and continues 
until either no further model changes occur over one complete round, or a pre-set 
number of variable selections and deletions occur.

As the amount of collected data for this research was relatively low including 
two individual clusters of turbidity values (as shown in the Results section), it was 
not feasible to divide the data traditionally into training and validation subsets. 
Instead, cross-validation was used. Cross-validation is an efficient resampling method 
to predict the fit of a model when the dataset is small. In k-fold cross-validation, the 
whole data set is used for training and validating the model by dividing the dataset 
randomly into k equal size partitions, and in turn, using k-1 partitions to train the 
model and one partition for validation. The procedure is repeated k times until every 
partition is used once for validation. The final estimation is produced by averaging 
over the k models’ prediction results. (Arlot & Celisse, 2010) 

In this study, multivariable linear regression (MLR) was used to estimate the 
output variable as a linear combination of selected input variables as in Equation (1).

			   y=b+p1 x1+p2 x2....+pn xn,               (1)
where y is the estimate output variable, x is the selected input variable, p is 

a model parameter, and b is the bias value defined from the data. Root Mean Square 
Error (RMSE) and coefficient of determination (R2) are used to evaluate the relative 
performance of the model.

3. Results and Discussion

The delays between the monitoring locations in the DMA were studied both 
mathematically using auto-correlation analysis and inspecting the figures of flow, 
pressure, and water quality measurements visually to compare the temporal location 
of the peaks and level changes. The auto-correlation analysis measures the similarity 
between the variables as a function of the lag and indicates the delays between 
measurement locations. Both mathematical and visual inspections showed that 
variables from the consecutive monitoring stations in the WDN have logical delays. 
Based on the mathematical analysis, the quality measurements in the end part of the 
network have a delay of up to 20 hours to the beginning of the distribution network.
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Water turbidity was modelled  with the aforementioned MLR modelling 
method. Even though the linear model does not find the nonlinear relations between 
input and output variables, it has a simple structure, and it is easy to understand 
and implement. MLR models are also suggested being used to avoid over-fitting, and 
in some cases, they can outperform the more complex and computationally heavier 
nonlinear models (Hastie et al., 2009; Montgomery et al., 2012). In Table I is shown 
the performance values R2 (1.0 means the perfect match) and RMSE together with 
the selected input variables (x), the bias (b), and the parameter (p) values of the 
developed model. The measured turbidity and the modelled turbidity with the 95% 
confidence interval are shown in Figure 2. For confidential reasons, no exact dates 
or turbidity values are shown, but the values are scaled to the range [0 1]. As seen, 
there are two main clusters of turbidity values due to the two separate data collecting 
periods in spring/early summer and late summer/fall. The developed model is not 
perfect, and some turbidity values fall out the 95% confidence interval.However, the 
model is able to determinate both the higher and lower levels of water turbidity 
even though the lower turbidity values seem to be harder to model correctly. As seen 
in the model structure presented in Table I, the turbidity is highly dependent on the 
one flow (F) measurement and one pressure (P) measurement at the beginning of 
the network and less dependent on the three pressure measurements at the later 
part of the network. In Mustonen et al. (2008), it was reported that pressure shocks 
temporarily increase the turbidity in water.

 When evaluating the presented results, it is essential to take into account 
that only flow and pressure measurements were used as input variables, and no 
other measurements such as water quality were utilized as inputs. For example, the 
temperature, which differs by many degrees of Celsius between and during the two 
data collecting campaigns, is an essential factor when assessing the water quality 
as the temperature can alter the physical and chemical properties of water and 
influences several other quality parameters. Therefore, the achieved performance 
of the developed turbidity model for assessing the water turbidity can be considered 
reasonable. Also, due to the limited resources available, no external long-term testing 
data were available for proofing the functionality of the model in various and varying 
conditions. However, based on the presented results it is reasonable to state that 
it seems that the level of and changes in turbidity at the end part of the WDN can 
be estimated based on only the existing online hydraulic condition measurements. 
The model-based estimation on water quality requires no other information, 
manual sampling, or mounting and maintaining any additional sensors. Against the 
laborious, expensive and infrequent manual sampling and laboratory analysis, the 
presented data-driven modelling approach enables assessing the water quality in a 
non-laborious and cost-effective way utilizing only the data from the existing online 
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flow and pressure measurements. Hence, utilizing the developed model, essential 
information on the water quality and the state of the distribution network can be 
achieved also from the areas where no stand-alone water quality measurements 
exist. The developed model could be used as an early warning tool to indicate 
the upcoming changes in water quality. This information would enable proactive 
operation, and the distribution of potable water with the required quality could be 
achieved. In addition, the overall costs of the water utility could be decreased as 
possible at least some of the manual sampling and laboratory analyses performed in 
the normal conditions could be replaced by the modelling approach monitoring.

Figure 2. The measured and modelled turbidity in scaled values with 95% 
confidence interval.

Table I. The performance values, selected input variables, and the 
parameter values of the developed water turbidity model.

	
Turbidity model

R2 0.77
RMSE 0.18
b+p1*x1 +…+ pn*xn -2.13 + 2.15*F1 + 2.91*P2 + 0.33*P3 - 0.42*P4 - 0.33*P5
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4. Conclusion

In this study, a water quality model for assessing the turbidity in the end part 
of the distribution network was developed using only the online flow and pressure 
measurements of a WDN as input variables. The online monitoring data were collected 
at several monitoring stations along the urban WDN during two separate periods. 
Based on the presented modelling result, it seems that the level of and changes in 
water turbidity can be estimated utilizing  only the hydraulic condition information 
of the distribution network collected by existing online sensors. However, as the 
model uses only flow and turbidity measurements as inputs, any changes in turbidity 
caused by other factors (for instance, temperature) may not be picked up by the 
model which may affect the model performance. 

Mounting and maintaining online sensors for water quality monitoring in old 
WDN is laborious and expensive. Utilizing the data from existing sensors via modelling 
approach does not increase the purchase, installation or maintenance costs of the 
water utility but could increase the essential information on the water quality 
and the state of the network in areas where no water quality measurements are 
available. On the contrary, the modelling approach could reduce the overall costs as 
in the best situation the number of reactive actions could be lower and possible some 
of the laborious, expensive and time-consuming manual sampling and laboratory 
analyses could be replaced by the model-based water quality information. As the 
data analysis also showed, the delays between the monitoring stations and the water 
quality monitoring point were several hours. Therefore, the information received 
from the model could be utilized  also as an early warning tool of the changes in 
water quality contrary to the infrequent manual sampling and laboratory analyses. 
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