Зависимость роста ели Шренка от климата и изменчивость осадков в высокогорных районах северного Тянь-Шаня

Булат Зубаиров

Казахстанско-немецкий университет, ул. Пушкина, 111, Алматы, 050010, Казахстан

* E-mail: zubairov@dku.kz

https://doi.org/10.29258/CAJWR/2022-R1.v8-2/31-45.eng.eng
Аннотация

В данной статье представлена новая древесно-кольцевая хронология ели Шренка (Picea schrenkiana Fisch. et Mey.), полученая на основе образцов, собранных у верхней границы леса в северном Тянь-Шане (юго-восточная часть Казахстана). Корреляционный анализ с использованием дневных климатических данных показал, что осадки в период с 8 июля по 5 ноября каждого предшествующего года, являются основным фактором, ограничивающим рост дерева в каждом текущем году r = 0,648 (p<0,05). Полученная хронология была использована для реконструкции осадков в период с 1829 по 2016 гг. Реконструкция объясняет 41% дисперсии в данных инструментальных наблюдений за количеством осадков за калибровочный период 1948-1987. Реконструкция выявила шесть дат с экстремальными значениями (±2σ). Экстремально засушливые годы были отмечены в 1846, 1886 и 1912 гг., а экстремально влажные годы были отмечены в 1879, 1917 и 1920 годах. Как проявление экстремальных лет, так и вариация в увеличении/уменьшении количества осадков значительно изменились за последние 70 лет. Количество осадков увеличивалось в периоды 1829-1843, 1856-1869, 1880-1905, 1920-1935, 1946-1955 и 1978-1993 г. и уменьшалось в 1843-1856, 1869-1880, 1905-1920, 1935-1946, 1955-1978 гг. и 1993-2016 гг. Вейвлет анализ Морлета выявил наличие циклов ~2-4, ~5-7 и ~10-16 лет, что указывает на возможность связи изменчивости осадков в исследуемом районе с колебаниями в циркуляции определенных атмосферной индексов. Данное исследование дает новую информацию для понимания высокогорных экологических изменения в Северном Тянь-Шане.

Доступно на английском

Download the article (eng)

Для цитирования: Zubairov, B. (2022).Climate-growth relationships of Schrenk spruce and precipitation variability at the high-mountain areas of the northern Tien Shan. Central Asian Journal of Water Research, 8(2), 31–45. https://doi.org/10.29258/CAJWR/2022-R1.v8-2/31-45.eng

Список литературы

Allan, R., Lindesay, J. & Parker, D. (1996). El Niño southern oscillation and climatic variability. CSIRO.

Borscheva, N.M. (1981). Vlijanie klimaticheskih fak¬torov na radial’nyi prirost drevesiny Eli Shrenka v Zailijskom Alatau [Influence of climatic factors on radial wood growth of Schrenk spruce in the Ile Alatau]. In R. Krinickaja (Ed.), Bioekologicheskiye issledovaniya v elovykh lesakh Tyan’-Shanya (pp. 159-167). Ilim, Frunze [in Russian].

Borscheva, N.M. (1983). Dendroklimaticheskij analiz radial’nogo prirosta Eli Shrenka v gorah sever¬nogo Tyan’-Shanya [Dendroclimatological analyses of the radial growth of Picea schrenkiana in the northern Tien Shan] [Doctoral dissertation abstract] Sverdlovsk [in Russian].

Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., & Esper, J. (2011). 2500 years of European climate variability and human susceptibility. Science, 331(6017), 578–582. https://doi.org/10.1126/ science.1197175

Chen, F., Mambetov, B., Maisupova, B., & Kelgenbayev, N. (2017). Drought variations in Almaty (Kazakhstan) since AD 1785 based on spruce tree rings. Stochastic Environmental Research and Risk Assessment, 31(8), 2097-2105. https://doi.org/10.1007/s00477-016-1290-y.

Cook, E.R., & Peters, K. (1981). The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41, 45-53.

Cook, E.R. (1985). A time series analysis approach to tree ring standardization [Unpublished doctoral dissertation thesis] the University of Arizona.

Cook, E.R., & Holmes, R.L. (1986). User’s manual for program ARSTAN. In R.L. Holmes, R.K. Adams, & H.C. Fritts (Eds.), Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN (pp. 50-65). The University of Arizona.

Cook, E.R., & Kairiukstis, L.A. (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers.

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian monsoon failure and Megadrought during the last millennium. Science, 328(5977), 486–489. https://doi.org/10.1126/science.1185188

D’Arrigo, R., Jacoby, G., Wilson, R., & Panagiotopoulos, F. (2005). A reconstructed Siberian High index since AD 1599 from Eurasian and North American tree rings. Geophysical Research Letters 32(5). https://doi.org/10.1029/2004gl022271

D’Arrigo, R., Wilson, R., Liepert, B., & Cherubini, P. (2008). On the ‘divergence problem’ in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 60(3-4), 289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004

Dulamsuren, C., Wommelsdorf, T., Zhao, F., Xue, Y., Zhumadilov, B. Z., Leuschner, C., & Hauck, M. (2013). Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems, 16(8), 1536–1549. https://doi. org/10.1007/s10021-013-9700-1

Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250–2253. https://doi.org/10.1126/science.1066208

Hu, Z., Zhang, C., Hu, Q., & Tian, H. (2014). Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. Journal of Climate, 27(3), 1143–1167. https://doi.org/10.1175/ jcli-d-13-00064.1

Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183). https://doi.org/10.1126/science.124757944

Gerlitz, L., Vorogushyn, S., Apel, H., Gafurov, A., Unger-Shayesteh, K., & Merz, B. (2016). A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to Central and South Asia. Hydrology and Earth System Sciences, 20(11), 4605–4623. https://doi. org/10.5194/hess-20-4605-2016

Holmes, R.L. (1983). Computer-assisted quality control in tree-ring dating and measurements. Tree-ring Bulletin 43, 69-78.

Jhun, J.-G., & Lee, E.-J. (2004). A New East asian winter monsoon index and associated characteristics of the Winter Monsoon. Journal of Climate, 17(4), 711–726. https://doi.org/10.1175/1520- 0442(2004)017<0711:aneawm>2.0.co;2

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910. https://doi.org/10.1175/jtech-d-11-00103.1

Mountain Research Initiative EDW Working Group. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5(5), 424-430. http://dx.doi.org/10.1038/ nclimate2563

Panyushkina, I. P., Meko, D. M., Macklin, M. G., Toonen, W. H., Mukhamаdiev, N. S., Konovalov, V. G., Ashikbaev, N. Z., & Sagitov, A. O. (2018). Runoff variations in Lake Balkhash Basin, Central Asia, 1779–2015, inferred from tree rings. Climate Dynamics, 51(7-8), 3161–3177. https://doi. org/10.1007/s00382-018-4072-z

Passmore, D.G., Harrison, S., Winchester, V., Rae, A., Severskiy, I., & Pimankina, N.V. (2004). Recent historic debris flows and valley floor development in the northern Zailiiskiy Alatau, Tien Shan Mountains, Kazakhstan. In H. Schröder, & I. Severskiy (Eds.), Water resources in the basin of the Ili River (Republic of Kazakhstan) (pp. 288-310). Mensch & Buch Verlag.

Schweingruber, F. H. (1996). Tree Rings and Environment: Dendroecology. Haupt.

Speer, J. H. (2010). Fundamentals of tree-ring research. The University of Arizona Press.

Telesca, L., Vicente-Serrano, S.M., & López-Moreno, J.I. (2013). Power spectral characteristics of drought indices in the Ebro river basin at different temporal scales. Stochastic Environmental Research and Risk Assessment 27(5), 1155-1170. https://doi.org/10.1007/s00477-012-0651-4

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa >2.0.co;2

Usoltsev, V. A., Chen, B., Shobairi, S. O., Tsepordey, I. S., Chasovskikh, V. P., & Anees, S. A. (2020a). Patterns for populus spp.. stand biomass in gradients of winter temperature and precipitation of Eurasia. Forests, 11(9), 906. https://doi.org/10.3390/f11090906

Usoltsev, V. A., Lin, H., Shobairi, S. O., Tsepordey, I. S., & Ye, Z. (2020b). Are there differences in the reaction of the light-tolerant subgenus pinus spp.. biomass to climate change as compared to light-intolerant genus picea spp..? Plants, 9(10), 1255. https://doi.org/10.3390/plants9101255

Williams, M.W., & Konovalov, V.G. (2008). Central Asia temperature and precipitation data, 1879- 2003 [Data set]. USA National Snow and Ice Data Center.

Zhang, R., Shang, H., Yu, S., He, Q., Yuan, Y., Bolatov, K., & Mambetov, B. T. (2016). Tree-ring-based precipitation reconstruction in southern Kazakhstan, reveals drought variability since A.D. 1770. International Journal of Climatology, 37(2), 741–750. https://doi.org/10.1002/joc.4736

Zhang, R., Wei, W., Shang, H., Yu, S., Gou, X., Qin, L., Bolatov, K., & Mambetov, B. T. (2019). A tree ring-based record of annual mass balance changes for the ts.tuyuksuyskiy glacier and its linkages to climate change in the Tianshan Mountains. Quaternary Science Reviews, 205, 10–21. https:// doi.org/10.1016/j.quascirev.2018.11.028

Zubairov, B., Balanzategui, D., Heussner, K.-U., Heinrich, I., Lentschke, J., & Schröder, H. (2018a). Reconstruction of precipitation based on Schrenk Spruce Tree-Ring width in the Terskey Alatau, Kazakhstan. Berliner Geographische Arbeiten 121, 87-98.45

Zubairov, B., Heußner, K.-U., & Schröder, H. (2018b). Searching for the best correlation between climate and tree rings in the trans-ili alatau, Kazakhstan. Dendrobiology, 79, 119–130. https:// doi.org/10.12657/denbio.079.011

Zubairov, B., Lentschke, J., & Schröder, H. (2019). Dendroclimatology in Kazakhstan. Dendrochronologia, 56, 125602. https://doi.org/10.1016/j.dendro.2019.05.006

Zubairov, B. (2020). Application of dendroclimatic methods in assessment of climate change impacts on the annual growth of Schrenk spruce in the Ile River basin, southeastern Kazakhstan [Doctoral dissertation] the Humboldt University of Berlin. https://doi.org/10.18452/21042

высокогорье, горы Тянь-Шаня, дендроклиматология, ель Шренка, Казахстан

Добавить комментарий

Подписка на статьи: