Водопотребление плантации павловнии войлочной в засушливом климате в Кыргызстане, Центральная Азия
Нильс Тевс a*, Кумар Алиев b, Клара Байер c
a Глюкштрассе 2, Бонн, 53115, Германия;
b Всемирный центр агролесоводства, ул. Токтогуль, д. 141, Бишкек, 720001, Кыргызстан;
c Министерство охраны окружающей среды Германии, пл. Вëрлитцер, д. 1, Дессау-Росблау 06844, Германия
https://doi.org/10.29258/CAJWR/2025-R1.v11-1/27-46.eng
E-mail*: niels.thevs@gmail.com
Кумар Алиев: k.aliev@cifor-icraf.org; Клара Байер: clara.baier95@gmail.com
Аннотация
В последнее время на ряде небольших плантаций в Центральную Азию была интродуцирована павловния войлочная (Paulowniaspec.). Древесина Paulownia отличается высоким качеством и применима в изготовлении мебели, досок для серфинга и лыж, а также строительстве домов и лодок. Таким образом, древесина Paulownia является ценным сырьем как для центральноазиатского региона, так и за его пределами. Ввиду того, что значительная часть региона располагается в зоне засушливого климата, для нормального роста павловнии требуется полив. На фоне дефицита водных ресурсов в Центральной Азии настоящее исследование было направлено на оценку водопотребления и производительности данного вида дерева на базе 6-летней плантации. Деревья были посажены в мае 2017 г. и срублены до пней в 2018 г. Суточная эвапотранспирация рассчитывалась по методу Пенмана-Монтейта, а соответствующие коэффициенты урожайности основывались на фактических значениях эвапотранспирации (дистанционное зондирование S-SEBI). Среднее потребление воды одним деревом составило 1 741 л, 4 461 л, 4 500 л и 4 407 л за вегетационные периоды 2020, 2021, 2022 и 2023 гг., соответственно. Производительность воды для стволовой древесины за весь период роста – с момента посадки в 2017 г. до 2023 г. – составила 1,59 г/л-1 и 5,65 мл/л-1. Учитывая высокое качество древесины и широкий спектр ее применения, можно сделать вывод, что вода, потребляемая павловнией войлочной, позволяет получать более ценную древесину и лесоматериал по сравнению с другими видами деревьев, произрастающими в сопоставимых районах Центральной Азии.
Доступно на английском
Скачать статью (анг)Для цитирования:
Thevs, N., Aliev, K., Baier, C. (2025). Water consumption of a Paulownia plantation in an arid climate in Kyrgyzstan, Central Asia. Central Asian Journal of Water Research, 11(1), 27–46. https://doi.org/10.29258/CAJWR/2025-R1.v11-1/27-46.eng
Список литературы
Albaugh, J.M., Dye, P.J., & King, J.S. (2013). Eucalyptus beyond Its Native Range: Environmental Issues In Exotic Bioenergy Plantations, International Journal of Forestry Research. https://doi.org/10.1155/2013/852540
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, FAO
Allen, R.G. & Pereira, L.S. (2009). Estimating crop coefficients from fraction of ground cover and height. Irrigation Science, 28, 17–34. https://doi.org/10.1007/s00271-009-0182-z
Andivia, E., Fernández, M., Alaejos, J., & Tapias, R. (2013). Consumo de aguade distintas especies leñosas utilizables como cultivos energéticos. 6º Congreso Forestal Español. https://www.congresoforestal.es/actas/doc/6CFE/6CFE01-122.pdf. Accessed 21 June 2020
Baier, C., Thevs, N., Villwock, D., Emileva, B., & Fischer, S. (2021). Water productivity of Paulownia tomentosa x fortunei (Shan Tong) in a plantation at Lake Issyk‑Kul, Kyrgyzstan, Central Asia. Trees, 35, 1627-1637. https://doi.org/10.1007/s00468-021-02141-8
Bhattarai, N., Shaw, S.B., Quackenbush, L.J., Im, J., & Niraula, R. (2016). Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 49, 75-86
Bork, J., Walter, E., Mosandl, R., & Stimm, B. (2015). Paulownia—vorläufige Ergebnisse zu Möglichkeiten und Grenzen des Anbaus im Wald. Forstarchiv, 86, 102–106. https://doi.org/10.4432/0300-4112-86-102
Cristiano, P.M., Diaz Villla, M.V.E., De Diego, M.S., Lacoretz, M.V., Madanes, N., & Goldstein, G. (2020). Carbon assimilation, water consumption and water use efficiency under different land use types in subtropical ecosystems: from native forests to pine plantations. Agricultural and Forest Meteorology, 291, 108094. https://doi.org/10.1016/j.agrformet.2020.108094
Essl, F. (2007). From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia, 79, 377–389
FAO (2020). Global Forest Resources Assessment. Country Reports 2020. http://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/. Accessed 10 June 2023
FAOSTAT (2023). https://www.fao.org/faostat/en/#home. Accessed 05 Jun 2023
Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., & Poyatos, R. (2019). A synthesis of bias and uncertainty in sap flow methods. Agriculture and Forest Meteorology, 271, 362–374. https://doi.org/10.1016/j.agrformet. 2019.03.012
Forrester, D.J. (2015). Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiology, 35, 289–304. https://doi.org/10.1093/treephys/tpv011
Frédette, C., Labrecque, M., Comeau, Y., & Brisson, J. (2019). Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environment Management, 246, 526-537. https://doi.org/10.1016/j.jenvman.2019.06.010
Fuchs, S., Leuschner, C., Link, R., Coners, H., & Schuldt, B. (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agriculture and Forest Meteorology, 244–245, 151–161. https://doi.org/10.1016/j.agrfo rmet.2017.04.003
García-Morote, F.A., López-Serrano, F.R., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., & Lucas-Borja, M.E. (2014). Stem Biomass Production of Paulownia elongata × P. fortunei under Low Irrigation in a Semi-Arid Environment. Forests, 5, 2505-2520; doi:10.3390/f5102505
Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., & Tolk, J.A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26, 223-237
Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., & Tolk, J.A. (2007). Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. American Society of Agricultural and Biological Engineers, 50, 1639-1644
Guidi, W., Piccioni, E., & Bonari, E. (2008). Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresource Technology, 99, 4832-4840
Hazaymeh, K. & Hassan, Q.K. (2015). Fusion of MODIS and Landsat-8 Surface Temperature Images: A New Approach. PLOS ONE, 10. e0117755. doi:10.1371/journal.pone.0117755
Hou, L.G., Xiao, H.L., Si, J.H., Xiao, S.C., Zhou, M.X., & Yang, Y.G. (2010). Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China. Agricultural Water Management, 97, 351-356
Jakubowski, M. (2022). Cultivation Potential and Uses of Paulownia Wood: A Review. Forests, 13, 668. https://doi.org/10.3390/f13050668
Khamzina, A., Sommer, R., Lamers, J.P.A., & Vlek, P.L.G. (2009). Transpiration and early growth of tree plantations established on degraded cropland over shallow saline groundwater table in northwest Uzbekistan. Agriculture and Forest Meteorology, 149, 1865–1874. https://doi.org/10.1016/j.agrformet.2009.06.015
Li, C., Li, Z., Gao, Z., & Sun, B. (2021). Estimation of Evapotranspiration in Sparse Vegetation Areas by Applying an Optimized Two-Source Model. Remote Sensing, 13, 1344. https://doi.org/10.3390/rs13071344.
Liang, S.L. (2000). Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sensing of the Environment, 76, 213-238
Longbrake, A.C.W. (2001). Ecology and Invasive Potential of Paulownia tomentosa (Scrophulariaceae) in a Hardwood Forest Landscape. PhD Dissertation. College of Arts and Sciences of Ohio University
Maier, C.A., Burley, J., Cook, R., Ghezehei, S.B., Hazel, D.W., & Nichols, E.G. (2019). Tree Water Use, Water Use Efficiency, and Carbon Isotope Discrimination in Relation to Growth Potential in Populus deltoides and Hybrids under Field Conditions. Forests, 10, 993. doi:10.3390/f10110993
Mitchell, A.M. (2015). Kyrgyz Republic—Communities, Forests, and Pastures. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/550371468263989781/kyrgyz-republic-communities-forests-and-pastures. Accessed 15 June 2023
Nelis, P.A. & Mai, C. (2019). Improved strength properties of three-layered particleboards with different core and surface layers based on Kiri wood (Paulownia spp.). European Journal of Wood Products, 77, 761–769. https://doi.org/10.1007/s00107-019-01442-7
Pergl, J., Sádlo, J., Petrusek, A., Laštuuvka, Z., Musil, J., Perglova, I., Šanda, R., Šefrová, H., Šíma, J., Vohralik, V. (2016). Black, Grey and Watch Lists of Alien Species in the Czech Republic Based on Environmental Impacts and Management Strategy. NeoBiota, 28, 1
Renninger, H.J., Steward, L.F., & Rousseau, R.J. (2021). Water Use, Efficiency, and Stomatal Sensitivity in Eastern Cottonwood and Hybrid Poplar Varietals on Contrasting Sites in the Southeastern United States. Frontiers in Forests and Global Change. https://doi.org/10.3389/ffgc.2021.704799
Reyer, C.P.O., Rigaud, K.K., Fernandes, E., Hare, W., Serdeczny, O., & Schellnhuber, H.J. (2017). Turn down the heat: regional climate change impacts on development. Regional Environmental Change, 17, 1563–1568. https://doi.org/10.1007/s10113-017-1187-4
Roerink, G.J., Su, B., & Menenti, M. (2000). S-SEBI A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, B 25, 147–157
Salehi, H., Shamsoddini, A., Mirlatifi, S.M., Mirgol, B., & Nazari, M. (2021). Spatial and Temporal Resolution Improvement of Actual Evapotranspiration Maps Using Landsat and MODIS Data Fusion. Frontiers of Environmental Sciences, 9, 795287. doi: 10.3389/fenvs.2021.795287
Senay, G.B., Budde, M., Verdin, J.P., & Melesse, A.M. (2007). A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors, 7, 979-1000
Snow, W.A. (2015). Ornamental, Crop, or Invasive? The History of the Empress Tree (Paulownia) in the USA. Forests Trees amd Livelihoods, 24, 85–96
Sobrino, J.A., Gómez, M., Jiménez-Muñoz, J.C., & Olioso, A. (2007). Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sensing of the Environment, 110, 139-148
Sobrino, J.A., Gómez, M., Jiménez-Muñoz, J.C., Olioso, A., & Chehbouni, G. (2005). A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX campaigns Original Research Article. Journal of Hydrolology, 315, 117-125
Stannard, D.I. (1993). Comparison of Penman-Monteith, Shuttleworth-Wallace, and Modified Priestley-Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland. Water Resources Research, 29, 1379-1392
Steppe, K., de Pauw, D.J.M., Doody, T.M., & Teskey, R.O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agriculture and Forest Meteorology, 150, 1046–1056. https://doi.org/10.1016/j.agrformet.2010.04.004
Stimm, B., Stiegler, J., Genser, C., Wittkopf, S., & Mosandl, R. (2013). Paulownia— Hoffnungsträger aus Fernost? Eine schnellwachsende Baumart aus China in Bayern auf dem Prüfstand. LWF Aktuell, 96, 18–21
Thevs, N. & Nowotny, R. (2023). Water consumption of industrial hemp (Cannabis sativa L.) during dry growing seasons (2018-2022) in NE Germany. Journal of Cultivated Plants, 75, 173–184. DOI: 10.5073/JfK.2023.07-08.01
Thevs, N., Baier, C., & Aliev, K. (2021). Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia. Journal of Water Resource and Protection, 13, 293-308. https://doi.org/10.4236/jwarp.2021.134018
Thomas, F.M., Foetzki, A., Arndt, S.K., Bruelheide, H., Gries, D., Li, X., Zeng, F., Zhang, X., & Runge, M. (2006). Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and Applied Ecology, 7, 253–267. https://doi.org/10.1016/j.baae.2005.07.008
UNECE (2019). Forest Landscape Restoration in the Caucasus and Central Asia – Challenges and Opportunities. Background study for the Ministerial Roundtable on Forest Landscape Restoration in the Caucasus and Central Asia (21–22 June 2018, Astana, Kazakhstan) http://www.unece.org/fileadmin/DAM/timber/Forest_Policy/Capacity_building/FLR_CCA_challenges___opportunities_081018-ENG-edited.pdf. Accessed 10 May 2023
USGS (2019). Landsat 8 (L8) Data Users Handbook, Department of the Interior, U.S. Geological Survey, LSDS-1574 Version 5.0. Sioux Falls, South Dakota, EROS. https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook Accessed 16 Jan 2023
Villwock, D. (2019). Water productivity of Poplar and Paulownia as fast-growing trees in Central Asia, Master Thesis, University of Hohenheim
Waters, R., Allen, R.G., Tasumi, M., Trezza, R., & Bastiaanssen, W.G.W. (2002). SEBAL Surface Energy Balance Algorithms for Land – Idaho Implementation – Advanced Training and Users Manual, University of Idaho, USA
Weng, Q., Fu, P., & Gao, F. (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of the Environment, 145, 55-67. https://doi.org/10.1016/j.rse.2014.02.003
Wullschleger, S.D., Menzer, F.C., & Vertessy, R.A. (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18, 499-512
Zhao, G., Zhang, Y., Tan, J., Li, C., & Ren, Y. (2020). A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors, 20, 4337. https://doi.org/10.3390/s20154337
возобновляемое сырье, дистанционное зондирование, древесная биомасса, орошение, потребление воды, эвапотранспирация