Water consumption of a Paulownia plantation in an arid climate in Kyrgyzstan, Central Asia

Niels Thevs a*, Kumar Aliev b, Clara Baier c

a Gluckstrasse 2, Bonn, 53115, Germany
b World Agroforestry, Toktogul Street 141, Bishkek, 720001, Kyrgyzstan
c Umweltbundesamt, Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany

https://doi.org/10.29258/CAJWR/2025-R1.v11-1/27-46.eng

Corresponding author e-mail*: niels.thevs@gmail.com

Kumar Aliev: k.aliev@cifor-icraf.org; Clara Baier: clara.baier95@gmail.com

Abstract

Recently, Paulownia spec. has been introduced to Central Asia in a number of small plantations. Paulownia yields timber of high quality for applications such as furniture, house construction, boat construction, and surf boards, or skis. Thus, Paulownia might offer a much-needed raw material for this region and beyond. However, Central Asia is largely occupied by drylands so that Paulownia needs irrigation. Against the background of frequent water stress across the region, this study aimed at assessing the water consumption and water productivity of that tree, using a 6-year-old plantation as study site. Trees were planted in May 2017 and cut back to their stumps in 2018. Daily crop evapotranspiration was calculated after the Penman-Monteith approach, whereby the crop coefficients were inherited from actual evapotranspiration values which stemmed from the remote sensing approach S-SEBI. Water consumption per tree was 1741 l, 4461 l, 4500 l, and 4407 l over the growing seasons 2020, 2021, 2022, and 2023, respectively. The water productivity for the stem wood over the whole time-span from planting in 2017 until 2023 was 1.59 g l-1 and 5.65 ml l-1. Given the high quality of its timber and its range of high-value applications, it can be concluded that the water consumed by Paulownia enables higher value timber and timber products than other trees that grow in comparable areas of Central Asia.

Available in English

Download the article (eng)

For citation:

Thevs, N., Aliev, K., Baier, C. (2025). Water consumption of a Paulownia plantation in an arid climate in Kyrgyzstan, Central Asia. Central Asian Journal of Water Research, 11(1), 27–46. https://doi.org/10.29258/CAJWR/2025-R1.v11-1/27-46.eng

References

Albaugh, J.M., Dye, P.J., & King, J.S. (2013). Eucalyptus beyond Its Native Range: Environmental Issues In Exotic Bioenergy Plantations, International Journal of Forestry Researchhttps://doi.org/10.1155/2013/852540

Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, FAO

Allen, R.G. & Pereira, L.S. (2009). Estimating crop coefficients from fraction of ground cover and height. Irrigation Science, 28, 17–34. https://doi.org/10.1007/s00271-009-0182-z

Andivia, E., Fernández, M., Alaejos, J., & Tapias, R. (2013). Consumo de aguade distintas especies leñosas utilizables como cultivos energéticos. 6º Congreso Forestal Español. https://www.congresoforestal.es/actas/doc/6CFE/6CFE01-122.pdf. Accessed 21 June 2020

Baier, C., Thevs, N., Villwock, D., Emileva, B., & Fischer, S. (2021). Water productivity of Paulownia tomentosa x fortunei (Shan Tong) in a plantation at Lake Issyk‑Kul, Kyrgyzstan, Central Asia. Trees, 35, 1627-1637. https://doi.org/10.1007/s00468-021-02141-8

Bhattarai, N., Shaw, S.B., Quackenbush, L.J., Im, J., & Niraula, R. (2016). Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 49, 75-86

Bork, J., Walter, E., Mosandl, R., & Stimm, B. (2015). Paulownia—vorläufige Ergebnisse zu Möglichkeiten und Grenzen des Anbaus im Wald. Forstarchiv, 86, 102–106. https://doi.org/10.4432/0300-4112-86-102

Cristiano, P.M., Diaz Villla, M.V.E., De Diego, M.S., Lacoretz, M.V., Madanes, N., & Goldstein, G. (2020). Carbon assimilation, water consumption and water use efficiency under different land use types in subtropical ecosystems: from native forests to pine plantations. Agricultural and Forest Meteorology, 291, 108094. https://doi.org/10.1016/j.agrformet.2020.108094

Essl, F. (2007). From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia, 79, 377–389

FAO (2020). Global Forest Resources Assessment. Country Reports 2020. http://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/. Accessed 10 June 2023

FAOSTAT (2023). https://www.fao.org/faostat/en/#home. Accessed 05 Jun 2023

Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., & Poyatos, R. (2019). A synthesis of bias and uncertainty in sap flow methods. Agriculture and Forest Meteorology, 271, 362–374. https://doi.org/10.1016/j.agrformet. 2019.03.012

Forrester, D.J. (2015). Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiology, 35, 289–304. https://doi.org/10.1093/treephys/tpv011

Frédette, C., Labrecque, M., Comeau, Y., & Brisson, J. (2019). Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environment Management, 246, 526-537. https://doi.org/10.1016/j.jenvman.2019.06.010

Fuchs, S., Leuschner, C., Link, R., Coners, H., & Schuldt, B. (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agriculture and Forest Meteorology, 244–245, 151–161. https://doi.org/10.1016/j.agrfo rmet.2017.04.003

García-Morote, F.A., López-Serrano, F.R., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., & Lucas-Borja, M.E. (2014). Stem Biomass Production of Paulownia elongata × P. fortunei under Low Irrigation in a Semi-Arid Environment. Forests, 5, 2505-2520; doi:10.3390/f5102505

Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., & Tolk, J.A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26, 223-237

Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., & Tolk, J.A. (2007). Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. American Society of Agricultural and Biological Engineers, 50, 1639-1644

Guidi, W., Piccioni, E., & Bonari, E. (2008). Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresource Technology, 99, 4832-4840

Hazaymeh, K. & Hassan, Q.K. (2015). Fusion of MODIS and Landsat-8 Surface Temperature Images: A New Approach. PLOS ONE, 10. e0117755. doi:10.1371/journal.pone.0117755

Hou, L.G., Xiao, H.L., Si, J.H., Xiao, S.C., Zhou, M.X., & Yang, Y.G. (2010). Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China. Agricultural Water Management, 97, 351-356

Jakubowski, M. (2022). Cultivation Potential and Uses of Paulownia Wood: A Review. Forests, 13, 668. https://doi.org/10.3390/f13050668

Khamzina, A., Sommer, R., Lamers, J.P.A., & Vlek, P.L.G. (2009). Transpiration and early growth of tree plantations established on degraded cropland over shallow saline groundwater table in northwest Uzbekistan. Agriculture and Forest Meteorology, 149, 1865–1874. https://doi.org/10.1016/j.agrformet.2009.06.015

Li, C., Li, Z., Gao, Z., & Sun, B. (2021). Estimation of Evapotranspiration in Sparse Vegetation Areas by Applying an Optimized Two-Source Model. Remote Sensing, 13, 1344. https://doi.org/10.3390/rs13071344.

Liang, S.L. (2000). Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sensing of the Environment, 76, 213-238

Longbrake, A.C.W. (2001). Ecology and Invasive Potential of Paulownia tomentosa (Scrophulariaceae) in a Hardwood Forest Landscape. PhD Dissertation. College of Arts and Sciences of Ohio University

Maier, C.A., Burley, J., Cook, R., Ghezehei, S.B., Hazel, D.W., & Nichols, E.G. (2019). Tree Water Use, Water Use Efficiency, and Carbon Isotope Discrimination in Relation to Growth Potential in Populus deltoides and Hybrids under Field Conditions. Forests, 10, 993. doi:10.3390/f10110993

Mitchell, A.M. (2015). Kyrgyz Republic—Communities, Forests, and Pastures. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/550371468263989781/kyrgyz-republic-communities-forests-and-pastures. Accessed 15 June 2023

Nelis, P.A. & Mai, C. (2019). Improved strength properties of three-layered particleboards with different core and surface layers based on Kiri wood (Paulownia spp.). European Journal of Wood Products, 77, 761–769. https://doi.org/10.1007/s00107-019-01442-7

Pergl, J., Sádlo, J., Petrusek, A., Laštuuvka, Z., Musil, J., Perglova, I., Šanda, R., Šefrová, H., Šíma, J., Vohralik, V. (2016). Black, Grey and Watch Lists of Alien Species in the Czech Republic Based on Environmental Impacts and Management Strategy. NeoBiota, 28, 1

Renninger, H.J., Steward, L.F., & Rousseau, R.J. (2021). Water Use, Efficiency, and Stomatal Sensitivity in Eastern Cottonwood and Hybrid Poplar Varietals on Contrasting Sites in the Southeastern United States. Frontiers in Forests and Global Change. https://doi.org/10.3389/ffgc.2021.704799

Reyer, C.P.O., Rigaud, K.K., Fernandes, E., Hare, W., Serdeczny, O., & Schellnhuber, H.J. (2017). Turn down the heat: regional climate change impacts on development. Regional Environmental Change, 17, 1563–1568. https://doi.org/10.1007/s10113-017-1187-4

Roerink, G.J., Su, B., & Menenti, M. (2000). S-SEBI A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, B 25, 147–157

Salehi, H., Shamsoddini, A., Mirlatifi, S.M., Mirgol, B., & Nazari, M. (2021). Spatial and Temporal Resolution Improvement of Actual Evapotranspiration Maps Using Landsat and MODIS Data Fusion. Frontiers of Environmental Sciences, 9, 795287. doi: 10.3389/fenvs.2021.795287

Senay, G.B., Budde, M., Verdin, J.P., & Melesse, A.M. (2007). A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors, 7, 979-1000

Snow, W.A. (2015). Ornamental, Crop, or Invasive? The History of the Empress Tree (Paulownia) in the USA. Forests Trees amd Livelihoods, 24, 85–96

Sobrino, J.A., Gómez, M., Jiménez-Muñoz, J.C., & Olioso, A. (2007). Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sensing of the Environment, 110, 139-148

Sobrino, J.A., Gómez, M., Jiménez-Muñoz, J.C., Olioso, A., & Chehbouni, G. (2005). A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX campaigns Original Research Article. Journal of Hydrolology, 315, 117-125

Stannard, D.I. (1993). Comparison of Penman-Monteith, Shuttleworth-Wallace, and Modified Priestley-Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland. Water Resources Research, 29, 1379-1392

Steppe, K., de Pauw, D.J.M., Doody, T.M., & Teskey, R.O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agriculture and Forest Meteorology, 150, 1046–1056. https://doi.org/10.1016/j.agrformet.2010.04.004

Stimm, B., Stiegler, J., Genser, C., Wittkopf, S., & Mosandl, R. (2013). Paulownia— Hoffnungsträger aus Fernost? Eine schnellwachsende Baumart aus China in Bayern auf dem Prüfstand. LWF Aktuell, 96, 18–21

Thevs, N. & Nowotny, R. (2023). Water consumption of industrial hemp (Cannabis sativa L.) during dry growing seasons (2018-2022) in NE Germany. Journal of Cultivated Plants, 75, 173–184. DOI: 10.5073/JfK.2023.07-08.01

Thevs, N., Baier, C., & Aliev, K. (2021). Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia. Journal of Water Resource and Protection, 13, 293-308. https://doi.org/10.4236/jwarp.2021.134018

Thomas, F.M., Foetzki, A., Arndt, S.K., Bruelheide, H., Gries, D., Li, X., Zeng, F., Zhang, X., & Runge, M. (2006). Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and Applied Ecology, 7, 253–267. https://doi.org/10.1016/j.baae.2005.07.008

UNECE (2019). Forest Landscape Restoration in the Caucasus and Central Asia – Challenges and Opportunities. Background study for the Ministerial Roundtable on Forest Landscape Restoration in the Caucasus and Central Asia (21–22 June 2018, Astana, Kazakhstan) http://www.unece.org/fileadmin/DAM/timber/Forest_Policy/Capacity_building/FLR_CCA_challenges___opportunities_081018-ENG-edited.pdf. Accessed 10 May 2023

USGS (2019). Landsat 8 (L8) Data Users Handbook, Department of the Interior, U.S. Geological Survey, LSDS-1574 Version 5.0. Sioux Falls, South Dakota, EROS. https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook Accessed 16 Jan 2023

Villwock, D. (2019). Water productivity of Poplar and Paulownia as fast-growing trees in Central Asia, Master Thesis, University of Hohenheim

Waters, R., Allen, R.G., Tasumi, M., Trezza, R., & Bastiaanssen, W.G.W. (2002). SEBAL Surface Energy Balance Algorithms for Land – Idaho Implementation – Advanced Training and Users Manual, University of Idaho, USA

Weng, Q., Fu, P., & Gao, F. (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of the Environment, 145, 55-67. https://doi.org/10.1016/j.rse.2014.02.003

Wullschleger, S.D., Menzer, F.C., & Vertessy, R.A. (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18, 499-512

Zhao, G., Zhang, Y., Tan, J., Li, C., & Ren, Y. (2020). A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors, 20, 4337. https://doi.org/10.3390/s20154337

evapotranspiration, irrigation, remote sensing, renewable raw material, water consumption, woody biomass

Leave a Reply