Effects of regulated deficit irrigation on crop water productivity, yield components, and yield response factor of common bean (Phaseolus vulgaris L)

Sabqatullah Alipour a*, Mohammad Zaman Amini b, Mohammad Daud Haidari b

a National Water Affairs Regulation Authority (Ministry of Energy and Water), Darulaman Road, Sanatoruim Kabul, Afghanistan
b Department of Soil Science and Irrigation, Faculty of Agriculture, Kabul University, Kart-e-Char, Kabul, Afghanistan

Corresponding author e-mail: alipour.sbh@gmail.com

M. Amini: zamanamini@gmail.com; M. Haidari: m.daud.haidari@gmail.com.

https://doi.org/10.29258/CAJWR/2022-R1.v8-1/112-125.eng

Research article

Abstract

Due to declining water resources allocated to agriculture and rapid population growth, it is important to use water efficiently and increase crop water productivity (CWP). Deficit irrigation is considered an important strategy to achieve this goal. For this purpose, field experiments were conducted at the research farm of the Agriculture Faculty on Kabul University campus for two continuous years (2018-2019). The experiment consisted of four treatments, including full irrigation (ET100), 80% (ET80), 60% (ET60), and 40% (ET40) arranged in a randomized complete block design with three replications. Compared to ET100 and ET80, the ET60 and ET40 treatments significantly (P<0.05) reduced the duration of flowering and pod formation. The bean crop also showed best performance in plant height, number of leaves per plant, leaf area, leaf area index, number of pods per plant, number of seeds per pod, length of pod, 100-seed weight, and total grain yield in the ET100 and ET80 treatments. Moreover, significantly greater values of crop water productivity (CWP) and lower value of Ky were observed in ET80 compared to ET100, ET60 and ET40. Overall, the experiment results showed that regulated deficit irrigation can effectively increase water productivity. Supplying only 80% instead of full water requirement can result in a higher common bean CWP. This is of particular importance in water-scarce areas, where the water saved based on this practice can be used to irrigate additional acreage.

Available in English

Download the article (eng)

For citation: Alipour, S., Amini, M.Z., & Haidari, M. D. (2022). Effects of regulated deficit irrigation on crop water productivity , yield components , and yield response factor of common bean (Phaseolus vulgaris L ). Central Asian Journal of Water Research, 8(1), 112–125. https://doi.org/10.29258/CAJWR/2022-R1.v8-1/112-125.eng.

References

Abd El-Wahed, M.H., Baker, G.A., Ali, M.M. & Abd El-Fattah, F.A. (2017).  Effect of drip deficit irrigation and soil mulching on growth of common bean plant, water use efficiency and soil salinity.  Scientia Horticulturae, 225, 235–242 (http://doi.org/ 10.1016/j.scienta.2017.07.007)

Abreu, M.E., Mioto, P.T. & Mercier, H. (2016).  Hormonal Interactions Underlying Plant Development under Drought.  In Plant Hormones under Challenging Environmental Factors (pp. 51–73).  Springer (http://doi.org/10.1007/978-94-017-7758-2_3)

Adeboye, O.B., Schultz, B., Adekalu, K.O. & Prasad, K. (2015).  Crop water productivity and economic evaluation of drip-irrigated soybeans (Glyxine max L. Merr.).  Agriculture & Food Security, 4(1), 1–13 (https://doi.org/10.1186/s40066-015-0030-8)

Admasu, R., Asefa, A. & Tadesse, M. (2019).  Effect of Growth Stage Moisture Stress on Common Bean (Phaseolus Vulgaris L.) Yield and Water Productivity at Jimma, Ethiopia. International Journal of Environmental Sciences & Natural Resources, 16(1), 25–32 (https://doi.org/10.19080/IJESNR.2019.16.555929)

Ali, M.H., Hoque, M.R., Hassan, A.A. & Khair, A. (2007).  Effects of deficit irrigation on yield, water productivity, and economic returns of wheat.  Agricultural Water Management, 92(3), 151–161 (http://doi.org/10.1016/j.agwat.2007.05.010)

Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998).  FAO Irrigation and drainage paper No. 56.  Rome: Food and Agriculture Organization of the United Nations, 56(97), e156 (https://www.fao.org/3/x0490e/x0490e00.htm)

Al-Omran, A.M. & Louki, I. I. (2011).  Yield response of cucumber to deficit irrigation in greenhouses.  WIT Transactions on Ecology and the Environment, 145, 517–524 (http://doi.org/10.2495/WRM110451)

Asemanrafat, M. & Honar, T. (2017).  Effect of water stress and plant density on canopy temperature, yield components and protein concentration of red bean (Phaseolus vulgaris L. cv. Akhtar).  International Journal of Plant Production, 11(2), 241–258 (https://doi.org/10.22069/ijpp.2017.3422)

Ayubi, A.G. (2019).  Principles of irrigation and drainage.  Azim Publications

Bessada, S.M.F., Barreira, J.C.M. & Oliveira, M.B.P.P. (2019).  Pulses and food security: Dietary protein, digestibility, bioactive and functional properties.  Trends in Food Science & Technology, 93, 53–68 (https://doi.org/10.1016/j.tifs.2019.08.022)

Dhakar, R., Chandran, M.A.S., Nagar, S., Kumari, V.V., Subbarao, A.V.M., Bal, S.K. & Kumar, P.V. (2018).  Field crop response to water deficit stress: assessment through crop models.  In Advances in Crop Environment Interaction (pp. 287–315).  Springer (http://doi.org/10.1007/978-981-13-1861-0_11)

Fathi, A. & Tari, D.B. (2016).  Effect of drought stress and its mechanism in plants.  International Journal of Life Sciences, 10(1), 1–6 (https://doi.org/10.3126/ijls. v10i1.14509)

Finley, S. (2016).  Sustainable Water Management in Smallholder Farming: Theory and Practice.  CABI (https://www.cabi.org/bookshop/book/9781780646862/)

Furgassa, Z.S. (2017).  The effect of deficit irrigation on maize crop under conventional furrow irrigation in Adami Tulu Central Rift Valley of Ethiopia.  Applied Engineering, 1(1), 1–12 (http://doi.org/10.11648/j.ae.20170101.11)

Ghassemi-Golezani, K. & Mazloomi-Oskooyi, R. (2008).  Effect of water supply on seed quality development in common bean (Phaseolus vulgaris var.).  International Journal of Plant Production, 2(2), 117–124 (https://doi.org/10.22069/ijpp.2012.604)

Ghassemi-Golezani, K., Zafarani-Moattar, P., Raey, Y. & Mohammadi, A. (2010).  Response of pinto bean cultivars to water deficit at reproductive stages.  Journal of Food, Agriculture and Environment, 8(2), 801–804

Gogoi, N., Baruah, K.K. & Meena, R.S. (2018).  Grain legumes: impact on soil health and agroecosystem.  In Legumes for Soil Health and Sustainable Management (pp. 511–539).  Springer (http://doi.org/10.1007/978-981-13-0253-4_16)

Gonçalves, J.G.R., Chiorato, A.F., Silva, D.A. da, Esteves, J.A. de F., Bosetti, F. & Carbonell, S.A.M. (2015).  Combining ability in common bean cultivars under drought stress. Bragantia, 74, 149–155

Gonzalez-Dugo, V., Durand, J.-L. & Gastal, F. (2010).  Water deficit and nitrogen nutrition of crops.  A review.  Agronomy for Sustainable Development, 30(3), 529–544 (http://doi.org/10.1051/agro/2009059)

Greaves, G.E. & Wang, Y.M. (2017).  Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan.  Plant Production Science, 20(4), 353–365 (https://doi.org/ 10.1080/1343943X.2017.1365613)

Hirich, A., Choukr-Allah, R., Fahmi, H., Abdellatif, R., Laajaj, K., Jacobsen, S.E. & El Omari, H. (2014).  Using deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa.  Revue Marocaine Des Sciences Agronomiques et Vétérinaires, 2(1), 15–22 (https://www.agrimaroc.org/index.php/Actes_IAVH2/article/download/305/284)

Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M. & Lucht, W. (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages.  Hydrology and Earth System Sciences, 19(7), 3073–3091 (https://doi.org/ 10.5194/hess-19-3073-2015)

Jovanovic, Z. & Stikic, R. (2012).  Strategies for improving water productivity and quality of agricultural crops in an era of climate change.  Irrigation Systems and Practices in Challenging Environments, 77–102 (http://doi.org/10.5772/29275)

Kanwar, R. (2009).  Sustainable water systems for agriculture and 21st century challenges. Journal of Crop Improvement, 24(1), 41–59 (http://doi.org/10.1080/ 15427520903307700)

Kusvuran, S. & Dasgan, H.Y. (2017).  Effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris L. Legume Research-An International Journal, 40(1), 55–62 (https://arccjournals.com/journal/legume-research-an-international-journal/LR-290)

Lado, S.J., Onyando, P.J. & Karanja, A. (n.d.).  Effect of Deficit Irrigation on Yield-Water Relation of French Bean in Rift Valley–Njoro Nakuru County-Kenya

Levitt, E.J., Pelletier, D.L. & Pell, A.N. (2009).  Revisiting the UNICEF malnutrition framework to foster agriculture and health sector collaboration to reduce malnutrition: a comparison of stakeholder priorities for action in Afghanistan.  Food Policy, 34(2), 156–165 (http://doi.org/10.1016/j.foodpol.2008.07.004)

Maleki, A., Esnaashar, N. & Bidabadi, A.A. (2017).  Impact of deficit irrigation on yield components, water use efficiency and yield response factor of cowpea in Khorramabad Iran.  J. Eng. Appl. Sci, 12(9), 2471–2479 (http://doi.org/10.36478/jeasci.2017.2471. 2479)

Morrison, J., Morikawa, M., Murphy, M. & Schulte, P. (2009).  Water scarcity & climate change.  Growing Risks for Business and Investors, Pacific Institute, Oakland, California (https://pacinst.org/wp-content/uploads/2009/02/growing-risk-for-business-investors-2.pdf)

Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. & Qiu, L. (2019).  Research progress and perspective on drought stress in legumes: a review.  International Journal of Molecular Sciences, 20(10), 2541 (https://doi.org/10.3390%2Fijms20102541)

Nangia, V. & Yadava, N.D. (2016).  Improving Water Productivity in Dry Areas.  Annals of Arid Zone, 55(3 & 4), 63–66 (https://www.researchgate.net/publication/312605240)

Ninou, E., Tsialtas, J.T., Dordas, C.A. & Papakosta, D.K. (2013).  Effect of irrigation on the relationships between leaf gas exchange related traits and yield in dwarf dry bean grown under Mediterranean conditions.  Agricultural Water Management, 116, 235–241 (http://doi.org/10.1016/j.agwat.2012.08.002)

NSIA (2016-17).  National Statistic Information Authority, Afghanistan Statistical Yearbook: Agricultural Lands Report.  Islamic Republic of Afghanistan

Ntukamazina, N., Onwonga, R.N., Sommer, R., Mukankusi, C.M., Mburu, J. & Rubyogo, J.C. (2017).  Effect of excessive and minimal soil moisture stress on agronomic performance of bush and climbing bean (Phaseolus vulgaris L.).  Cogent Food & Agriculture, 3(1), 1373414 (https://doi.org/10.1080/23311932.2017.1373414)

Oteki, D.R. (2015).  Evaluation of Deficit Irrigation on Water Productivity and Yield Response of Beans Using AquaCrop in Eldoret, Kenya.  Moi University (http://www.secheresse.info/spip.php?article81297)

Rasti Sani, M., Ganjeali, A., Lahouti, M. & Mousavi Kouhi, S.M. (2018).  Morphological and physiological responses of two common bean cultivars to drought stress.  Journal of Plant Process and Function, 6(22), 37–46 (https://profdoc.um.ac.ir/paper-abstract-1067673.html)

Sadeghipour, O. (2009).  Effect of deficit irrigation on physiologic and agronomic traits in common bean (Phaseolus vulgaris L.) genotypes.  Iranian Journal of Crop Sciences, 11(1), 25–39 (http://agrobreedjournal.ir/article-1-216-en.html)

Salas, J.D., Govindaraju, R.S., Anderson, M., Arabi, M., Francés, F., Suarez, W., Lavado-Casimiro, W.S. & Green, T.R. (2014).  Introduction to hydrology.  In Modern Water Resources Engineering (pp. 1–126).  Springer (https://doi.org/10.1007/978-1-62703-595-8_1)

Smith, M.R., Veneklaas, E., Polania, J., Rao, I.M., Beebe, S.E. & Merchant, A. (2019). Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.).  PLoS One, 14(6), e0217099 (https://doi.org/10.1371/journal.pone.0217099)

Taiz, L., Zeiger, E., Møller, I.M. & Murphy, A. (2015).  Plant physiology and development. Issue Ed. 6.  Sinauer Associates Incorporated

Wilcox, C.S., Grutzmacher, S., Ramsing, R., Rockler, A., Balch, C., Safi, M. & Hanson, J. (2015).  From the field: Empowering women to improve family food security in Afghanistan.  Renewable Agriculture and Food Systems, 30(1), 15–21 (https://doi.org/ 10.1017/S1742170514000209)

Yazar, A., Mart, D., Çolak, Y.B. & Kaya, Ç.İ. (2017).  Yield response of faba bean to various irrigation strategies in the Mediterranean region.  International Journal of Research in Agriculture and Forestry, 4, 9–19 (https://www.ijraf.org/papers/v4-i7/2.pdf)

Zargar, S.M., Mahajan, R., Nazir, M., Nagar, P., Kim, S.T., Rai, V., Masi, A., Ahmad, S. M., Shah, R.A. & Ganai, N.A. (2017).  Common bean proteomics: Present status and future strategies.  Journal of Proteomics, 169, 239–248 (https://doi.org/10.1016/j.jprot.2017.03.019).

climate change, Crop Water Productivity (CWP), deficit irrigation, irrigation, water