Examining snow avalanches using Sentinel-1 radar data: case of Gissar-Alai Mountain Range
Kislyak U. A.*, Kostenkov N.A., Petrakov D.A.
Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
https://doi.org/10.29258/CAJWR/2025-R1.v11-1/106-122.rus
*e-mail: uakislyak@gmail.com
Kostenkov N.A.: kostenkov.nikita@mail.ru; Petrakov D.A.: dpetrakov@gmail.com
Thematic cluster: Climate & Environment
Type of paper: Research paper

Abstract
The investigation of avalanche activity in mountainous regions manifests an important aspect of public and infrastructure safety and protection, with particular attention to avalanches in hard-to-reach and poorly studied areas, like the Gissar-Alai Mountain Range. Remoteness, inaccessibility and increased cloudiness during the high avalanche season make field observations and applying optical satellite imagery for studying the avalanche activity in the Gissar-Alai extremely difficult. In such setting, radar technologies allowing to receive data regardless of weather and lighting conditions offer the best solution. The article describes the methodology for processing radar images of the Sentinel-1 satellite, as well as the results of decoding avalanche deposits in the Zeravshan, Gissar, Turkestan and Alai Ranges during the 2021-2022 season. The method underwent verification based on the Sentinel-2 multispectral data. In addition, the article characterizes the peculiar features of avalanche activity for each of the Gissar-Alai ridges, including the distribution of avalanche deposit zones by absolute heights, as well as slope steepness and exposure.
Available in Russian
Download the article (rus)For citation:
Kislyak, U. A., Kostenkov, N. A., Petrakov, D. A. (2025). Issledovanie snezhnykh lavin s pomoshch’yu radiolokatsionnykh dannykh sputnikа Sentinel-1 (na primere Gissaro-Alaya) [Examining snow avalanches using Sentinel-1 radar data: case ofGissar-Alai Mountain Range]. Central Asian Journal of Water Research, 11(1), 106–122. https://doi.org/10.29258/CAJWR/2025-R1.v11-1/106-122.rus (In Russian)
References
Abhinav A., Sharma A., Dhamija S., Negi H. S., 2025. Avalanche debris detection from Sentinel-2 data using fuzzy machine learning and colour spaces for the Indian Himalaya. Remote Sensing Letters, Vol. 16, №. 6, pp. 606-618, https://doi.org/10.1080/2150704X.2025.2488532
Baldina E.A., Troshko K.A., 2017. Radiolokacionnye dannye v geograficheskih issledovanijah i kartografirovanii, pod red. I.A. Labutinoj. [Radar data in geographical research and mapping] Izdatelstvo MGU, Moskva (in Russian)
Bianchi F.M., Grahn J., Eckerstorfer M., Malnes E., Vickers H., 2021. Snow avalanche segmentation in SAR images fully convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 75-82, https://doi.org/10.1109/JSTARS.2020.3036914
Chang A.T., Foster J.L., Hall D.K., Rango A., Hartline B.K., 1982. Snow water equivalent estimation by microwave radiometry. Cold Regions Science and Technology, Vol. 5, Issue 3, pp. 259-267, https://doi.org/10.1016/0165-232Xг82)90019-2
Dozier J., 1989. Spectral signature of Alpine cover from the LANDSAT thematic mapper. Remote Sensing of Environment, Vol. 45, pp. 9-22, https://doi.org/10.1016/0034-4257(89)90101-6
Eckerstorfer M., Bühler Y., Frauenfelder R., Malnes E., 2016. Remote sensing of snow avalanches: recent advances, potential, and limitations. Cold Regions Science and Technology, Vol. 121, pp. 126-140, https://doi.org/10.1016/j.coldregions.2015.11.001
Eckerstorfer M., Grahn J., 2021. Snow avalanche detection using Sentinel-1 in Langtang, Nepal. NORCE climate report 3-2021. URL: https://norceresearch.brage.unit.no/norceresearch-xmlui/handle/11250/2991792 (date of request: 18.08.2023).
Eckerstorfer M., Malnes E., Müller K., 2017. A complete snow avalanche activity record from a Norwegian forecasting region using Sentinel-1 satellite-radar data. Cold Regions Science and Technology, Vol. 144, pp. 39-51, https://doi.org/10.1016/j.coldregions.2017.08.004
Eckerstorfer M., Oterhals H.D., Müller K., Malnes E., Grahn J., Langeland S., Velsand P., 2022. Performance of manual and automatic detection of dry snow avalanches in Sentinel-1 SAR images. Cold Regions Science and Technology, Vol. 198, ID 103549, https://doi.org/10.1016/j.coldregions.2022.103549
European Space Agency, 2013. Sentinel-1 user handbook, Issue 1, Rev. 0, GMES-S1OP-EOPG-TN-13-0001
Hafner E. D., Techel F., Leinss S., Bühler, Y., 2021. Mapping avalanches with satellites–evaluation of performance and completeness. The Cryosphere, Vol. 15(2), pp. 983-1004
Hall D.K., Riggs G.A., Salomonson V.V., DiGirolamo N.E., Bayr K.J., 2002. MODIS snow-cover products. Remote Sensing of Environment, Vol. 83, Issues 1-2, pp. 181-194, https://doi.org/10.1016/S0034-4257(02)00095-0
Karas A., Karbou F., Giffard-Roisin S., Durand P., Eckert N., 2021. Automatic color detection-based method applied to Sentinel-1 SAR images for snow avalanche debris monitoring. IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, ID 5219117, https://doi.org/10.1109/TGRS.2021.3131853
Kashnickij A.V., Bril’ A.A., Burcev M.Ju., Samofal E.V., Uvarov I.A., Matveev A.M., 2016. Vozmozhnosti raboty s dannymi sputnika Sentinel-1 v informacionnoj sisteme VEGA-Science. [Opportunities of working with Sentinel-1 satellite data in the VEGA-Science information system] Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, Sbornik tezisov dokladov Chetyrnadcatoj Vserossijskoj otkrytoj konferencii, Moskva, 84 (in Russian)
Kotljakov V.M. (red.), 1997. Atlas snezhno-ledovyh resursov mira. [World atlas of snow and ice resources] Izdatelstvo Instituta geografii RAN, Moskva, 342 (in Russian)
Leinss S., Wicki R., Holenstein S., Baffelli S., Bühler Y., 2020. Snow avalanche detection and mapping in multitemporal and multiorbital radar images from TerraSAR-X and Sentinel-1. Natural Hazards and Earth System Sciences, Vol. 20, No. 6, pp. 1783-1803, https://doi.org/10.5194/nhess-20-1783-2020
Mjagkov S.M., Kanaev L.A. (red.), 1992. Geografija lavin. [Geography of avalanches] Izdatelstvo MGU, Moskva (in Russian)
Official site NASA’s Alaska Satellite Facility Distributed Active Archive Center, 2023. URL: https://search.asf.alaska.edu/ (date of request: 05.08.2023)
Official site Copernicus Data Space Ecosystem, 2023. URL: https://browser.dataspace.copernicus.eu (date of request: 09.08.2023)
Sartori M., 2023. Assessing the applicability of Sentinel-1 SAR data for semi-automatic detection of snow avalanche debris. MSc Thesis, University of Salzburg, Salzburg, Austria
Tompkin C., Leinss S., 2021. Backscatter characteristics of snow avalanches for mapping with local resolution weighting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 4452-4464, https://doi.org/10.1109/JSTARS.2021.3074418
WenH., Wu X., Shu X., Wang D., Zhao S., Zhou G., Li X., 2024. Spatial heterogeneity and temporal tendency of channeled snow avalanche activity retrieved from Landsat images in the maritime snow climate of the Parlung Tsangpo catchment, southeastern Tibet. Cold Regions Science and Technology, Vol. 223, 104206, https://doi.org/10.1016/j.coldregions.2024.104206
Yang J., Li C., Li L., Ding J., Zhang R., Han T., Liu Y., 2020. Automatic detection of regional snow avalanches with scattering and interference of C-band SAR Data. Remote Sensing, Vol. 12, No. 17, ID 2781, https://doi.org/10.3390/rs12172781
avalanche activity monitoring, avalanche deposit decoding, Gissar-Alai, remote sensing data, Sentinel-1 radar images, snow avalanches