Vanishing high-mountain ice causing hydrological challenges at global to local scales: An overview with notes on Central Asia

Wilfried Haeberli

Geography Department, University of Zurich, Switzerland

Email: wilfried.haeberli@geo.uzh.ch

https://doi.org/10.29258/CAJWR/2019-R1.v5-2/44-63eng

Scientific Article

Abstract

Glaciers and permafrost react strongly to atmospheric temperature rise. As a consequence, icy mid-latitude high-mountain environments including mountain ranges in Central Asia undergo rapid changes. Continuation of these changes must at least in part be considered unavoidable and the resulting impacts on the water cycle will be irreversible for generations to come. Primary hydrological challenges relate to sea level rise at global scale, to water supply from river discharge at continental to regional scale, and to the formation of new lakes with related options concerning hydropower, water resources or tourism and with their risks related to impact and flood waves at regional to local scales. International scientific cooperation, the use of new observational technologies and of enhanced modelling capacities together with comprehensive system analyses can form the knowledge basis for participative planning and the search for integrative solutions in adaptation strategies. Slowing down global warming by reducing greenhouse gas emissions will help assuring the necessary time for this difficult task. The present contribution is based on a keynote presentation at the 2018International Symposium on Water and Land Resources in Central Asia (CAWa). It reviews the current international literature on the topic in view of developing the necessary knowledge basis, including aspects related to Central Asia.

Download the article

For citation: Haeberli, W. (2019). Vanishing high-mountain ice causing hydrological challenges at global to local scales: An overview with notes on Central Asia. Central Asian Journal of Water Research, 5(2), 44–63. https://doi.org/10.29258/cajwr/2019-r1.v5-2/44-63eng

References

  1. Ablain, M., Legeais, J.F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H.B., Benveniste, J. and Cazenave, A., 2017. Satellite altimetry-based sea level at global and regional scales. Surveys in Geophysics, Vol. 38, pp. 7-31. Available at: http://doi.org/10.1007/s10712-016-9389-8.
  2. Allison, I., Colgan, W., King, M. and Paul, F., 2015. Ice Sheets, Glaciers, and Sea Level. . In: Haeberli, W. and Whiteman, C. (eds.), Snow and Ice-Related Hazards, Risks and Disasters, Elsevier, pp. 713-747.
  3. Biskaborn, B.K. and 47 co-authors, 2019. Permafrost is warming at a global scale. Nature Communications, Vol. 10, No. 264. Available at: http://doi.org/10.1038/s41467-018-08240-4.
  4. Bolch, T. and Gorbunov, A.P., 2014. Characteristics and Origin of Rock Glaciers in Northern Tien Shan (Kazakhstan/Kyrgyzstan). Permafrost and Periglacial Processes, Vol. 25, pp. 320–332. Available at: http://doi.org/10.1002/ppp.1825.
  5. Bolch, T., Rohrbach, N., Kutiusov, S., Robson, B.A. and Osmonov, A., 2018. Occurrence, evolution and ice content of ice- debris complexes in the Ak-Shiirak, Central Tien Shan revealed by geophysical and remotely-sensed investigations. Earth Surface Processes and Landforms. Available at: http://doi.org/10.1002/esp.4487.
  6. Bolch, T., Shea, J.M., Liu, S., Azam, F., Gao, Y., Gruber, S., Immerzehl, W.W., Kulkarni, A., Li, H., Tahir, A.A., Zhang, G., Zhang, Y., Bannerjee, A., Berthier, E., Brun, F., Kääb, A., Kraaijenbrink, A., Moholdt, G., Nicholson, L., Pepin, N. and Racoviteanu, A., 2019. Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya 
Region. In: Wester, P., Mishra, A., Mukerji, A. and Shresta, A.B. (eds.): The Hindu Kush Himalaya Assessment – Mountains, Climate Change, Sustainability and People. ICIMOD, HIMAP, Springer Open, 627p. Available at: http://doi.org/10.1007/978-3-319-92288-1_7.
  7. Carey, M., Baraer, M., Mark, B., French, A., Bury, J., Young, K.R. and McKenzie, J.M., 2013. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). Journal of Hydrology, Vol. 518 (A), pp. 60-70. Available at: http://doi.org/10.1016/j.jhydrol.2013.11.006.
  8. Carey, M., Huggel, C., Bury, J., Portocarrero, C. and Haeberli, W., 2012. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, Vol. 112, No. 3, pp. 733-767. Available at: http://doi.org/10.1007/s10584-011-0249-8.
  9. Colonia, D., Torres, J., Haeberli, W., Schauwecker, S., Braendle, E., Giraldez, C. and Cochachin, A., 2017. Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: Approach, first results, and perspectives for adaptation to climate change. Water, Vol. 9, No. 336. Available at: http://doi.org/10.3390/w9050336.
  10. Darrow, M.M., Gyswyt, N.L., Simpson, J.M., Daanen, R.P. and Hubbard, T.D., 2016. Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska. The Cryosphere, Vol. 10, pp. 977–993. Available at: http://doi.org/10.5194/tc-10-977-2016.

  11. Dehecq, A., Gourmelen, N., Gardner, A.S., Brun, F., Goldberg, D., Nienow, P.W., Berthier, E., Vincent, E., Wagnon, P. and Trouvé, E., 2018. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience. Available at: http://doi.org/10.1038/s41561-018-0271-9.
  12. Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino, M.., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., Mccoll, S., Ravanel, L. and Schoeneich, P., 2015. Ice loss and slope stability in high-mountain regions. In: W. Haeberli, C. Whiteman eds.: Snow and Ice- related Hazards, Risks and Disasters, Elsevier, Amsterdam etc., pp. 521-561.
  13. Dietz, A.J., Conrad, C., Kuenzer, C., Gesell, G. and Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing, Vol. 6, pp. 12752-12775. Available at: http://doi.org/10.3390/rs61212752.
  14. Drenkhan, F., Huggel, C., Guardamino, L. and Haeberli, W., 2019. Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Science of the Total Environment, Vol. 665,pp. 465-483. Available at: http://doi.org/10.1016/j.scitotenv.2019.02.070.
  15. Duethemann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., Jiang, T., Su, B. and Güntner, A., 2015. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resources Research, Vol. 51, pp. 4727–4750. Available at: http://doi.org/10.1002/ 2014WR016716.
  16. Eriksen, H. Ø., Rouyet, L., Lauknes, T.R., Berthling, I., Isaksen, K., Hindberg, H., Larsen, Y. and Corner, D.G., 2018. Recent acceleration of a rock glacier complex, Ádjet, Norway, documented by 62 years of remote sensing observations. Geophysical Research Letters, Vol. 45. Available at: http://doi.org/10.1029/2018GL077605.
  17. Falatkova, K., Šobr, M., Neureiter, A., Schöner, W., Jansky, B., Häusler, H., Engel, Z. and Beneš, V., 2019. Development of proglacial glacial lakes and evaluation of related outburst susceptibility at the Adygine ice-debris complex, northern Tien Shan. Earth Surface Dynamics, Vol. 7, pp. 301-320. Available at: http://doi.org/10.5194/esurf-7-301-2019.

  18. Farinotti, D., Huss, M., Fürst, J.J., Landmann, J., Machguth, H., Maussion, F. and Pandit, A., 2019a. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, Vol. 12, pp. 168–173. Available at: http://doi.org/10.1038/s41561-019-0300-3.
  19. Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S. and Güntner, A., 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, Vol.8, pp. 716-723. Available at: http://doi.org/10.1038/NGEO2513.
  20. Farinotti, D., Round, V., Huss, M., Compagno, L. and Zekollari, H., 2019b. Large hydropower and water-storage potential in future glacier-free basins. Nature, Vol. 75, pp. 341-344. Available at: http://doi.org/10.1038/s41586-019-1740-z.
  21. Gafurov, A., Vorogushyn, S., Farinotti, D., Duethmann, D., Merkushkin, A. and Merz, B., 2015. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. The Cryosphere, Vol. 9, pp. 451–463. Available at: http://doi.org/10.5194/tc-9-451-2015.

  22. GAPHAZ, 2017. Assessment of Glacier and Permafrost Hazards in Mountain Regions – Technical Guidance Document. Prepared by Allen, S., Frey, H., Huggel, C., Bründl, M., Chiarle, M., Clague, J.J., Cochachin, A., Cook, S., Deline, P., Geertsema, M., Giardino, M., Haeberli, W., Kääb, A., Kargel, J., Klimes, J., Krautblatter, M., McArdell, B., Mergili, M., Petrakov, D., Portocarrero, C., Reynolds, J. and Schneider, D. Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA). Zurich, Switzerland / Lima, Peru, 72 pp.
  23. Gruber, S., 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, Vol. 6, pp. 221–233. Available at: http://doi.org/10.5194/tc-6-221-2012.
  24. Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M.-O., Stumm, D., Wester, P., Zhang, Y. and Lin, Z., 2017. Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. The Cryosphere, Vol. 11, pp. 81-99. Available at: http://doi.org/10.5194/tc-11-81-2017.
  25. Haeberli, W. and Linsbauer, A., 2013. Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land. Brief communication, The Cryosphere, Vol. 7, pp. 817-821.
  26. Haeberli, W., Buetler, M., Huggel, C., Lehmann Friedli, Th., Schaub, Y. and Schleiss, A.J., 2016. New lakes in deglaciating high-mountain regions – opportunities and risks. Climatic Change, Vol. 139, No. 2, pp. 201-214. Available at: http://doi.org/10.1007/s10584-016-1771-5.
  27. Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S. and Vonder Mühll, D., 2006. Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes, Vol. 17/3, pp. 189-214. Available at: http://doi.org/10.1002/ppp.
  28. Haeberli, W., Kääb, A., Vonder Mühll, D. and Teysseire, Ph., 2001. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology, Vol. 47, No. 156, pp. 111-122.
  29. Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M. and Phillips, M., 2010. Mountain permafrost: Development and challenges of a young research field. Journal of Glaciology, Vol. 56, No. 200 (special issue), pp. 1043-1058.
  30. Haeberli, W., Schaub, Y. and Huggel, C., 2017. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, Vol. 293, pp. 405-417. Available at: http://doi.org/10.1016/j.geomorph.2016.02.009.
  31. Hagg, W., Hoelzle, M., Wagner, S., Mayr, E. and Klose, Z., 2013. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global and Planetary Change, Vol. 110, pp. 62–73. Available at: http://doi.org/10.1016/j.gloplacha.2013.05.005.
  32. Hoelzle, M., Azisov, E., Barandun, M., Huss, M. Farinotti, D., Gafurov, A., Hagg, W., Kenzhebaev, R., Kronenberg, M., Machguth, H., Merkushkin, A., Moldobekov, B., Petrov, M., Saks, T., Salzmann, N., Schöne, T., Tarasov, Y., Usubaliev, R., Vorogushyn, S., Yakovlev, A. and Zemp, M., 2017. Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods, and Data Systems, Vol. 6, pp. 397–418. Available at: http://doi.org/10.5194/gi-6-397-2017.
  33. Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V., Saks, T. and Shahgedanova, M., 2019. The status and role of the alpine cryosphere in Central Asia. Chapter 8 in Xenarios, S., Schmidt-Vogt, D., Qadir, M., Janusz-Pawletta, B. and Abdullaev, I. (eds.): The Aral Sea Basin – Water for Sustainable Development in Central Asia. Routledge, London and New York.
  34. Huggel, C., Carey, M., Clague, J.J. and Kääb, A. (eds.), 2015. The High-Mountain Cryosphere – Environmental Changes and Human Risks. Cambridge University Press, 363p.
  35. Huss, M. and Hock, R., 2015. A new model for global glacier change and sea-level rise. Frontiers in Earth Science, Vol. 3, pp. 1–22. Available at: http://doi.org/10.3389/feart. 2015.00054.
  36. Huss, M. and Hock, R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, Vol. 8, pp. 135-140. Available at: http://doi.org/10.1038/s41558-017-0049-x.
  37. Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R., Clague, J., Vuille, M., Buytaert, W., Cayan, D., Greenwood, G., Mark, B., Milner, A., Weingartner, R. and Winder, M., 2017. Towards mountains without permanent snow and ice. Earth’s Future, Vol. 5, pp. 418-435. Available at:  http://doi.org/10.1002/2016EF000514.
  38. IPCC, 2014. Climate Change 2013. The Physical Science Basis. Fifth Assessment Report. Geneva: Intergovernmental Panel on Climate Change.
  39. IPCC SROCC, in Press, 2019. Special Report on the Ocean and Cryosphere. WMO and UNEP.
  40. Jones, D.B., Harrison, S., Anderson, K. and Betts, R.A., 2018. Mountain rock glaciers contain globally significant water stores. Scientific Reports, Vol. 8, No. 2834. Available at: http://doi.org/10.1038/s41598-018-21244-w.
  41. Kääb, A., Treichler, D., Nuth, C. and Berthier, E., 2015. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere, Vol. 9, pp. 557–564. Available at: http://doi.org/10.5194/tc-9-557-2015.

  42. Kapitsa, V., Shahgedanova, M., Machguth, H., Severskiy, I. and Medeu, A., 2017. Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modeling. Natural Hazards and Earth System Sciences, Vol. 17, pp. 1837–1856. Available at: http://doi.org/10.5194/nhess-17-1837-2017.
  43. Kaser, G., Großhauser, M. and Marzeion, B., 2010. Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, Vol. 107, pp. 20223–20227. Available at: http://doi.org/10.1073/pnas.1008162107.
  44. Krainer, K., Bressan, D., Dietre, B. Haas, J.N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H. and Tonidandel, D., 2014. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, Vol. 83, No. 2, pp. 324–335. Available at:  http://doi.org/10.1016/j.yqres.2014.12.005.
  45. Krautblatter, M., Funk, D. and Günzel, F.K., 2013. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth Surface Processes and Landforms, Vol. 38, pp. 876–887. Available at: http://doi.org/10.1002/esp.3374.
  46. Linsbauer, A., Frey, H., Haeberli, W., Machguth. H., Azam, M.F., Allen, S., 2016. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya–Karakoram region. Annals of Glaciology, Vol. 57, No. 71, pp. 119-130. Available at: http://doi.org/10.3189/2016AoG71A627.
  47. Magnin, F., Haeberli, W., Linsbauer, A., Deline, P. and Ravanel, L., 2019. Estimating glacier-bed overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (Western European Alps). Geomorphology, Vol. 350. Available at: http://doi.org/10.1016/j.geomorph.2019.106913.
  48. Marchenko, S.S., Gorbunov, A.P. and Romanovsky, V.E., 2007. Permafrost warming in the Tien Shan Mountains, Central Asia. Global and Planetary Change, Vol. 56, pp. 311–327.
  49. Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclerq, P. and Paul, F., 2016. Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surveys in Geophysics, Vol. 38, No. 1, pp. 105-130. Available at: http://doi.org/10.1007/s10712-016-9394-y.
  50. Marzeion, B., Kaser, G., Maussion, F. and Champollion, N., 2018. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Climate Change, Vol. 8, Letters, pp. 305-308. Available at: http://doi.org/10.1038/s41558-018-0093-1.
  51. McDowell, G., Huggel, C., Frey, H., Wang, F.M., Cramer, K. and Vincent, R., 2019. Adaptation action and research in glaciated mountain systems: Are they enough to meet the challenge of climate change? Global Environmental Change, Vol. 54, pp. 19-20. Available at: http://doi.org/10.1016/j.gloenvcha.2018.10.012.
  52. Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radić, V. and Zemp, M., 2013. Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, Vol. 7, No. 5, pp. 1565–1577. Available at: http://doi.org/10.5194/tc-7-1565-2013.
  53. Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, F., Delaloye, R. and Hauck, C., 2018. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. The Cryosphere Discussion. Available at: http://doi.org/10.5194/tc-2018-272.
  54. MRI, 2015. Elevation-dependent warming in mountain regions of the world. Mountain Research Initiative EDW Working Group. Nature Climate Change, Vol. 5/2015. pp. 424-430. Available at: http://doi.org/10.1038/NCLIMATE2563.
  55. Noetzli, J. and Gruber, S., 2009. Transient thermal effects in Alpine permafrost. The Cryosphere, Vol. 3, pp. 85–99. Available at: http://doi.org//10.5194/tc-3-85-2009.
  56. Obu, J., Westermann, S. Bartsch, A., Berdnikov, N., 
Christiansen, H.H., Dashtseren, A. Delaloye, R., Elberling, B., 
Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., 
Leibman, M., Lewkowicz, A.G., Panda, S.K., Romanovsky, V., Way, R.G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J. and Zou, D., 2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Science Reviews, Vol. 193, pp. 299-316. Available at: http://dx.doi.org/j.earscirev.2019.04.023.
  57. Peters, J., Bolch, T., Gafurov, A. and Prechtel, N., 2015. Snow cover distribution in the Aksu Catchment (Central Tien Shan) 1986–2013 based on AVHRR and MODIS data. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 11, pp. 5361-5375. Available at: http://doi.org/10.1109/JSTARS.2015.2477108.  
  58. Pohl, C. and Hirsch Hadorn, G., 2007. Principles for designing transdisciplinary research – proposed by the Swiss Academies of Arts and Sciences. Oekom Verlag, München, 124 pp.
  59. RGI Consortium, 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. Available at:  http://doi.org/10.7265/N5-RGI-60.
  60. Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C. and Kääb, A., 2008. Observations and considerations on destabilizing active rock glaciers in the European Alps. In: Kane, D.L. and Hinkel, K.M. (eds): Ninth International Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks, Vol. 2, pp. 1505-1510.
  61. Schneider, D., Huggel, C., Cochachin, A., Guillén, S. and García, J., 2014. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Advances in Geosciences, Vol. 35, pp. 145-155. Available at: http://doi.org/10.5194/adgeo-35-145-2014.

  62. Siegfried, T., Bernauer, T., Guiennet, R., Sellars, S., Robertson, A.W., Mankin, J., Bauer-Gottwein, P. and Yakovlev, A., 2012. Will climate change exacerbate water stress in Central Asia? Climatic Change, Vol. 112, pp. 881–899. Available at: http://doi.org/10.1007/s10584-011-0253-z.
  63. Somos-Valenzuela, M.A., Chisolm, R.E., Rivas, D.S., Portocarrero, C. and McKinney, D.C., 2016. Modeling glacial lake outburst flood process chain: The case of Lake Palcacocha and Huaraz, Peru. Hydrology and Earth System Sciences, Vol. 20, pp. 2519–2543. Available at: http://doi.org/10.5194/hess-20-2519-2016.

  64. Sorg, A., Bolch, T., Stoffel, M., Solomina, O. and Beniston, M., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Review, Nature Climate Change, Vol. 2, pp. 725–731. Available at: http://doi.org/10.1038/nclimate1592.
  65. Treichler, D., Kääb, A., Salzmann, N. and Xu, Ch-Y., 2019. Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. The Cryosphere, Vol. 13, pp. 2977–3005. Available at: http://doi.org/10.5194/tc-13-2977-2019.

  66. Unger-Shayesteh, K., Vorogushyn, S., Farinotti, D., Gafurov, A., Duethmann, D., Mandychev, A. and Merz, B., 2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, Vol. 110, pp. 4–25. Available at: http://dx.doi.org/10.1016/j.gloplacha.2013.02.004.
  67. WCRP, 2018. Global sea-level budget 1993–present. Earth System Science Data, Vol. 10, pp. 1551–1590. Available at: http://doi.org/10.5194/essd-10-1551-2018.
  68. WGMS, 2017. Global Glacier Change Bulletin No. 2 (2014-2015). Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Huber, J., Machguth, H., Paul, F., and Hoelzle, M. (eds.), ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, publication based on database version: Available at: http://doi.org/10.5904/wgms-fog-2017-10.
  69. Worni, R., Huggel, C., Clague, J.J., Schaub, Y. and Stoffel, M., 2014. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Review, Geomorphology, Vol. 224, pp. 161-176. Available at: http://doi.org/10.1016/j.geomorph.2014.06.031.
  70. Yafyazova, R.K., 2011. Disastrous debris flows connected with glacial processes and defense methods against them in Kazakhstan. 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Italian Journal of Engineering Geology and Environment, pp. 1101-1110 Available at: http://doi.org/10.4408/IJEGE.2011-03.B-119.
  71. Zaginaev, V., Falatkova, K., Jansky, B., Šobr, M. and Erokhin, S., 2019. Development of a Potentially Hazardous Pro-Glacial Lake in Aksay Valley, Kyrgyz Range,
Northern Tien Shan. Hydrology, Vol. 6, No. 3. Available at: http://doi.org/10.3390/hydrology6010003.
  72. Zekollari, H., Huss, M. and Farinotti, D., 2018. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere Discussion. Available at: http://doi.org/10.5194/tc-2018-267.
  73. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer. S.U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A.P., Anderson, B., Bajracharya, S., Baroni. C., Braun, L.N., Ceres, B.E.C., Casassa, G., Cobos, G., Vila, R.R.D., Delgado Granados, H., Demuth. M.N., Espizua L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J.O., Holmlund, P., Karimi, N., Li, Zh., Pelto, M., Pitte, P., Popovnin, V.V., Portocarrero, C.A., Prinz, R., Sangewar, C.V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R. and Vincent, C., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, Vol. 61, No. 228, pp. 745-762. Available at: http://doi.org/10.3189/2015JoG15J017.
  74. Zhao, L., Marchenko, S.S., Sharkuu, N. and Wu, T., 2008. Regional changes of permafrost in Central Asia. Plenary Paper, Ninth International Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks, Vol. 1, pp. 2061-2069.

climate change, glaciers, high mountains, permafrost

Publication Alerts: