The effects of pre-ozonation on drinking water quality parameters

Bahman Masoomi1*, Neamatollah Jaafarzadeh2, Tayebeh Tabatabaie1, Sahand Jorfi3, Esmaeil Kouhgardi1

1Department of Environmental Engineering, Bushehr Branch, Islamic Azad Universiy, Bushehr, Iran, 75158-95496, Velayat  Building, Municipality Square, Bushehr, Bushehr Province, Iran.

2Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, 15794-61357, Medical Sciences Blvd, Mehr Street, Ahvaz, Khuzestan Province, Iran.

3Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, 15794-61357, Medical Sciences Blvd, Mehr Street, Ahvaz, Khuzestan Province, Iran.

* Corresponding author:

Esmaeil Kouhgardi:; Sahand Jorfi:; Tayebeh Tabatabaie:; Neamat Jaafarzadeh:

Research paper


The study investigated the effects of pre-ozonation on the parameters such as turbidity, color, chlorophyll a and TOC on a pilot scale.   The investigation results indicate that the amount of required ozone to remove TOC, color and turbidity depends on the quality of inlet water, and the efficiency of water ozonation depends on the process factors such as ozone dose, temperature, pH and ozone-water contact  time.  The study likewise shows that the lower amount of turbidity, TOC, temperature and higher alkaline pH of sample water boost the ozonation effect on removing the variables in question.  The results also demonstrate a direct relationship between pH, ozone dosage and contact time, as well as an indirect relationship between temprerature and the removal of parameters.

Download the article (eng)

For citation: Masoomi, B., Jaafarzadeh, N., Tabatabaie, T., & Jorfi, S. (2021). The Effects of Pre-Ozonation on Drinking Water Quality Parameters. Central Asian Journal of Water Research 7, 70–83.


Agency bbe moldaenke (2019). Chlorophyll Detection with Algae Class Dierentiation, Chlorophyll Fluorometer Detect Algae, Cyanobacteria, Diatoms (; 

Aikaterini, S., Paula, A.R.T., Ravi, K.C., Kamilla, M.S. (2018).   Ozonation control and effects of ozone on water quality in recirculating aquaculture systems.  Journal of Water Research, 133, pp. 289-298 (doi: 10.1016/j.watres.2018.01.032);

Ashfaq, S.M. (2017).  To study the performance of the ozone contactor using numerical tool.  International Journal of Current Engineering and Technology, 7 (1), pp. 55-61;

Athanasios, A.Thorsten, S.Carlo, G., Roger, A.F. (2016).  Contact Tank Design Impact on Process Performance.  Environ Model Assess, 21, pp. 563-576;

Carlo, N., Carmelo, M., Paolo, S. (2017).  Effects on Water Management and Quality Characteristics of Ozone Application in Chicory Forcing Process: A Pilot System.  Agronomy, 7 (2) (doi:10.3390/agronomy7020029);

Carlos, A., Leonilde, M., Marco, S.L. and Jose, A.P. (2019).  Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review.  Journal of Water, 11 (2), 205 (doi:10.3390/w11020205);

Carrim, A.H. (2006).  The effect of pre-ozonation on the physical characteristics of raw water and natural organic matter (NOM) in raw water from different South African water resources [dissertation].  Potchefstroom, South Africa: North-West University;

Collivignarelli, M.C., Abba, A., Benigna, I., Sorlini, S., Torretta, V. (2018).  Overview of the main disinfection processes for wastewater and drinking water treatment plants.  Sustainability, 10 (1), pp. 1-21 (doi: 10.3390su10010086);

Department of Fisheries and Aquatic Sciences, DFAS (2004).  A beginner’s guide to water management: Color, 1st Edition, Institute of Food and Agricultural Sciences, University of Florida;

Ershov, B.G., Morozov, P.A. (2009).  The kinetics of ozone decomposition in water, the influence of pH and temperature, Russian Journal of Physical Chemistry A., 83, pp. 1295-1299;

Gardoni, D., Vailati, A., Canziani, R. (2012).  Decay of Ozone in Water: A Review, Ozone: Science & Engineering.  The Journal of the International Ozone Association, 34 (4), pp. 233-242;

Geldenhuys, J.C., Giard, E., Harmse, M., Neveling, K., Potgieter, M. (2000).  The use of ozonation in combination with lime and activated sodium silicate in water treatment.  Final Report to the Water Research Commission.  Scientific Services, Rand Water.  WRC Report No: 446/1/00, ISBN 1 86845 549 1;

Ghadimkhani, A.A., Torabian, A. and Mehrabadi, A.R. (2006).  Preozonation and prechlorination effect on TOC removal in surface water treatment.  Pakistan Journal of Biological Science,  9 (4), pp. 708-712;

Heng, L.J., Guibai., L. (2009).  Algae Removal by Ozone.  State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin.  Desalination, 239 (1-3), pp. 191-197;

Honarmandrad, Z., Javid, N., Malakootian, M. (2020).  Efficiency of ozonation process with calcium peroxide in removing heavy metals (Pb, Cu, Zn, Ni, Cd) from aqueous solutions.  SN Applied Sciences, 2, 703 (;

Javid, N., Nasiri, A., Malakootian, M. (2019).  Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles.  Desalination and Water Treatment, 141:140-148;

Jung, Y., Hong, E., Kwon, M., Kang, J.W.A. (2017).  Kinetic study of ozone decay and bromine formation in saltwater ozonation: effect of O3  dose, salinity, pH and temperature.  Chemical Engineering Journal, 312, pp. 30-38;

Kevin, G.H., Rhulani, N.N. (2013).  Decomposition of Ozone in Water, Chemical Technology (;

Khadre, M.A., Yousef, A.E., Kim, J.G. (2001).  Microbiological aspects of ozone applications in food: a review.  Journal of Food Science, 66 (9), pp. 1242-1252;

Kim, J.H. (2002).  Integrated optimization of cryptosporidium inactivation and bromate formation control in ozone contactor.  PhD Dissertation, University of Illinois: pp. 11-16 and 19-30;

Lage Filho, F.A. (2010).  Ozone application in water sources: effects of operational parameters and water quality variables on ozone residual profiles and decay rates.  Brazilian Journal of Chemical Engineering, 27 (4), pp. 545-554;

Liu, H.L., Wang, D.S., Shi, B.Y., Wang, M., Tang, H.X. (2006).  Effects of pre-ozonation on organic matter removal by coagulation with IPF-PACl.  J Environ Sci (China), 18 (3), pp. 453-458;

Mahmoudi, A., Shafahee, H.A., Roudbari, A.A. (2015).  The effects of water ozonation on disinfection by-product formation.  International Journal of Health Studies, 1 (1), pp. 32-35;

Mahvi, A.H., Malakootian, M., Fatehizadeh, A., Ehrampoush, M.H. (2011).  Nitrate removal from aqueous solutions by nanofiltration.  Desalination and Water Treatment, 29 (1-3), pp. 326-330;

Mamba, B.B., Krause, R.W., Matsebula, B., Haarhoff, J. (2009).  Monitoring natural organic matter and disinfection byproducts at different stages in two South African water treatment plants.  Water SA, 35 (1), pp. 121-7 (doi: 10.4314/ wsa.v35i1.76650);

Mark, W., Lechevallier, T., Evans, M., Ramon, J. (1981).  Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.  Applied and Environmental Microbiology, 42 (1), pp. 159-167;

Masoomi, B., Jaafarzadeh, N., Tabatabaie, T., Kouhgardi, E., Jorfi, S. (2019).  Effects of pre-ozonation and chemical coagulation on the removal of turbidity, color, TOC, and chlorophyll a from drinking water.  Environmental Health Engineering and Management Journal, 6 (1), pp. 53-61 (doi: 10.15171/EHEM.2019.06);

Melicia, C.G., Allan, E.W., Isabella, B.G., Renata, V.T, Otniel, F.S, Rogerio, G., Davy William, H.C. (2018).  Effect of water temperature and pH on the concentration and time of ozone saturation.  Braz. J. Food Technol., 21 (e2017156, 15617);

Melin, E.S., Odegaard, H. (2000).  The effect of biofilter loading rate on the removal of organic ozonation by-products.  Journal of Water Research, 34 (18): 4464-4476 (doi:10.1016/S0043-1354(00)00204-9);

Minnesota Pollution Control Agency, MPCA (2008).  Turbidity: Description, Impact on Water Quality, Sources, Measures – A General Overview, Water Quality/Impaired Waters, 3.21 (;

Morrison, S., Venter., A., Barnard, S. (2012).  A case study to determine the efficacy of ozonation in purification processes.  Water SA, 38(1), pp. 49-54 (doi: 10.4314/wsa.v38i1.7); 

Nabi, R., Jafari, H., Karbassi, A.R., Nasrabadi, T. (2006).  Application of ozonation in drinking water disinfection based on an environmental management strategy approach using SWOT method.  Iranian Journal of Environmental Health Science & Engineering, 3 (1), pp. 23-30;

National Center for Biotechnology Information (NCBI ), Bookshelf (2017).  A Service of the National Library of Medicine, National Institutes of Health, Guidelines for Drinking Water Quality (Acceptability Aspects: Taste, Odour and Appearance): Fourth Edition Incorporating the First Addendum, Geneva: World Health Organization (;

Ozone Medicine Research Center, OMRC, (semi-industrial) of Iran (2007).  The method of destruction and removal of metals, colors, and organic matter with ozone (;

Rietveld, L., van der Helm, A., van Schagen, K., van der Aa, R., and van Dijk, H. (2008).  Integrated simulation of drinking water treatment.  J. Water Supply Res. Technol. AQUA. 57, pp. 133-141;

Samios, S., Lekkas, T., Nikolaou,  A., Golfinopoulos,  S. (2007).  Structural investigations of aquatic humic substances from different watersheds.  Desalination, 210 (1), pp. 125-37;

Sillanpaa, M., Matilainen, A., Lahtinen, T. (2015). Natural Organic Matter in Water, Characterization and Treatment Methods, Science Direct, pp. 17-53 (;

Spiliotopoulou, A., Rojas-Tirado, P., Chhetri, R.K., Kaarsholm, K.M.S., Martin, R., Pedersen, P.B., Pedersen, L.F., Andersen, H.R. (2018).  Ozonation control and effects of ozone on water quality in recirculating aquaculture systems.  Water Res., 15 (133), pp. 289-298;  

Summerfelt, S.T., Sharrer, M.J., Tsukuda, S.M., Gearheart, M. (2009).   Process requirements for achieving full-flow disinfection of recirculating water using ozonation and UV irradiation.  Aquacult. Eng., 40, pp. 17-27;

Tercero Espinoza, L.A., Rembor, M., Matesanz, C.A., Heidt, A. and Frimmel, F.H. (2009).  Formation of bromoform in irradiated titanium dioxide suspensions with varying pH otocatalyst, dissolved organic carbon and bromide concentrations.  The journal of Water Res, 43 (17), pp. 4143-4148 (doi: 10.1016/j.watres.2009.06.038);

Torabian, A., Ghadim-Khani, A., Rashidi-Mehr-Abadi, A., Shokouhi-Harandi, M., Janbeglu, R. (2006).  Analyzing the Effect of Preozonation on Removing the Total Organic Carbon in Surface Water Treatments.  Journal of Water and Wastewater, 58;

Twort, A.C., Ratnayaka, D.D., Brandt, M.J. (2000).  Water supply.  Fifth Edition, Arnold and IWA Publishing, London;

U.S. Environmental Protection Agency, US EPA (2017).  National Lakes Assessment, Field Operations Manual.  EPA, 841-B-16-002.  US EPA, Washington, D.C., 95;

Van der Aa, L.T.J., Rietveld, L.C. and van Dijk, J.C. (2011).  Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters.  Drinking Water Engineering and Science, 4 (1), pp. 25-35 (doi:10.5194/dwes-4-25-2011);

Water Quality Parameter Definitions, Chlorophyll a (2019). ( and publications/water quality monitoring/lower lakes/lower lakes water quality parameters);

World Health Organization, WHO (2011). Guidelines for Drinking Water Quality, WHO Press, Geneva, Switzerland, 4th edition;

Zhang, J., Andres, E., Martinez, T. and Zhang, Q. (2014).  Evaluation of Large Eddy Simulation and RANS for Determining Hydraulic Performance of Disinfection Systems for Water Treatment.  Journal of Fluids Engineering, 136 (12) (doi: 10.1115/1.4027652).

disinfection, humic acid, pilot plants, pre-ozonation, surface water treatment