Changes in atmospheric blocking recurrence and their influence on winter temperature regimes in Kazakhstan’s regions during 1960-2020
Kholoptsev A.V. a, Naurozbayeva Zh.K. b*
a N.N. Zubov State Oceanographic Institute’, Sovetskaya st., 61, Sevastopol, 299011, Russia
b JSC ‘Institute of Geography and Water Security, Seyfullin av., 458/1, Almaty, 050000 Kazakhstan
https://doi.org/10.29258/CAJWR/2025-R1.v11-1/1-26.rus
Corresponding author e-mail*: naurozbaeva.zhanar@mail.ru
Kholoptsev A.V.: kholoptsev@mail.ru
Abstract
The study aimed to investigate the peculiarities of spatial and temporal variability of atmospheric blocking recurrence and corresponding temperature regime variations over the territory of Kazakhstan during winter months. As inputs, the research utilized the shifts in mean hourly values of atmospheric pressure (reduced to sea level) and geopotential to 850, 500 and 300 hPa isobaric surfaces for detecting atmospheric blockings; and the observation data from Kazhydromet meteorological stations as well as other archive and electronic sources – for assessing the influence of atmospheric blockings on the thermal regime in the target Kazakhstan’s regions. The study comprised designing a methodology for detecting atmospheric blockings synergizing the traditional procedures applied for the purpose and reducing the associated error probability. The research allowed not only analyzing the mean values of atmospheric blocking recurrence (duration of not less than 5-10 days) during 1960-2020, and the trends of its inter-annual dynamics at the time intervals corresponding to different phases of the current climatic cycle for different section of Kazakhstan’s territory, but likewise determining the climatic normals in terms of the frequency of such blockings occurring for the modern climatic cycle, as well as their alterations against the baseline climatic period (1961-1990). In addition, the study examined the impacts of the considered atmospheric blockings on the thermal regime – characteristic for winter months – across different regions of Kazakhstan; and identified specific regions demonstrating the greatest modifications in their thermal regimes that had occurred during the periods of the atmospheric blockings in question.
Available in Russian
Download the article (rus)For citation:
Kholoptsev, A., Naurozbayeva, Zh. (2025). Izmeneniya povtoryaemosti atmosfernykh blokirovok nad regionami Kazakhstana v zimnie mesyatsy 1960–2020 gg. i ikh vliyanie na temperaturnye rezhimy [Changes in Atmospheric Blocking Recurrence and Their Influence on Winter Temperature Regimes in Kazakhstan’s Regions During 1960-2020]. Central Asian Journal of Water Research, 11(1), 1–26. https://doi.org/10.29258/CAJWR/2025-R1.v11-1/1-26.rus (In Russian)
References
Antokhina, O., Antokhin, P., Devyatova, E., Martynova, Y. (2018). 2004–2016 Wintertime Atmospheric Blocking Events over Western Siberia and Their Effect on Surface Temperature Anomalies. Atmosphere, 9. 72. doi:10.3390/atmos9020072
Bacer S., Jomaa F., Beaumet J., Gallée H., Le Bouëdec E., Ménégoz M., Staquet C. (2021). Impact of climate change on wintertime European atmospheric blocking // Weather and Climate Dynamics, https://doi.org/10.5194/wcd-2021-47
Barriopedro D., García-Herrera R., Lupo A. R., Hernández E. A. (2006). Climatology of Northern Hemisphere Blocking, Journal of Climate, 19, R. 1042–1063 https://doi.org/10.1175/JCLI3678.1
Bukharitsin P.I. (2019). Issledovaniya Kaspiiskikh l’dov. [Exploration of the Caspian ice] Palmarium Academic Publishing. 122 р. (in Russian)
Bukharitsin P.I., Boldyrev B.Yu., Novikov V.I. (2014). Kompleksnaya sistema gidrometeorologicheskogo obespecheniya bezopasnosti moreplavaniya, portov i transportnykh kompleksov na Kaspiiskom more. [Integrated system of hydrometeorological safety of navigation, ports and transport complexes in the Caspian Sea] Astrakhan’ – Astrakhan. 319 р. (in Russian)
Davini, D., D’Andrea F. (2020). From CMIP3 to CMIP6: Northern Hemisphere Atmospheric Blocking Simulation in Present and Future Climate, Journal of Climate, 33, 10 021–10 038, https://doi.org/10.1175/JCLI-D-19-0862.1
Drouard M., Woollings T. (2018). Contrasting Mechanisms of Summer Blocking Over Western Eurasia, Geophysical Research Letters, 45, 12,040–12,048, https://doi.org/10.1029/2018GL079894
Dzerdzeevskii B.L. (1968). Tsirkulyatsionnye mekhanizmy v atmosfere severnogo polushariya v XX stoletii [Circulation mechanisms in the atmosphere of the northern hemisphere in the XX century] // Materialy meteorologicheskikh issledovanii, M.: Izd-vo AN SSSR i Mezhved. geofiz. komiteta pri Prezidiume AN SSSR – Materials of meteorological research, Moscow: Publishing House of the USSR Academy of Sciences and the Interdepartmental Geophysical Committee under the Presidium of the USSR Academy of Sciences. 240 р. (in Russian)
Dzerdzeevskii B.L., Kurganskaya V.M., Vitvitskaya Z.M. (1946). Tipizatsiya tsirkulyatsionnykh mekhanizmov v severnom polusharii i kharakteristika sinopticheskikh sezonov. [Typization of circulation mechanisms in the northern hemisphere and characteristics of synoptic seasons] // Tr. n.-i. uchrezhdenii Gl. upr. gidrometeorol.sluzhby pri Sovete Ministrov SSSR. Ser. 2. Sinopticheskaya meteorologiya. Vyp. 21. L.: Gidrometizdat – Proc. scientific-industrial institution of the Main Administration of the Hydrometeorological Service under the Council of Ministers of the USSR. Series 2. Synoptic meteorology. Issue 21. L.: Gidrometizdat, 80 р. (in Russian)
Ezhegodniki po stikhiinym gidrometeorologicheskim yavleniyam, nablyudavshimsya na territorii Kazakhstana [Yearbooks on natural hydrometeorological phenomena observed on the territory of Kazakhstan] // Izdaniya s 1990 po 2015 gg. RGP «Kazgidromet», g. Almaty – Editions from 1990 to 2015. RSE “Kazhydromet”, Almaty. (in Russian)
Ezhegodnyi byulleten’ monitoringa sostoyaniya i izmeneniya klimata Kazakhstana. [Annual bulletin of monitoring of the state and climate change of Kazakhstan] https://www.kazhydromet.kz/ru/klimat/ezhegodnyy-byulleten-monitoringa-sostoyaniya-i-izmeneniya-klimata-kazahstana (in Russian)
Hersbach H., Dee D. 2016. ERA5 reanalysis is in production // ECMWF Newsletter. Vol. 147. P. 7.
Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N. (2020). The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146. R. 1999–2049. https://doi.org/10.1002/qj.3803
Hoffmann L., Günther G., Li D., Stein O. et al. (2019). From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations // Atm. Chem. Phys. Vol. 19. P. 3097-3124.
IMERG: Integrated Multi-satellite Retrievals for GPM | NASA https://gpm.nasa.gov/data/imerg
Kononova N.K. (2009). Klassifikatsiya tsirkulyatsionnykh mekhanizmov Severnogo polushariya po B.L. Dzerdzeevskomu [ Classification of circulation mechanisms of the Northern Hemisphere according to B.L. Dzerdzeevsky] / otv. red. A.B. Shmakin; Rossiiskaya akad. nauk, In-t geografii. M.: Voentekhinizdat – ed. A.V. Shmakin; Russian Academy of Sciences, Institute of Geography. Moscow: Voentekhinizdat, 372 р. (in Russian)
Kononova N. K., Lupo A. R. (2020). Changes in the Dynamics of the Northern Hemisphere Atmospheric Circulation and the Relationship to Surface Temperature in the 20th and 21st Centuries // Atmosphere. 11(3). 255; https://doi.org/10.3390/atmos11030255
Kozhakhmetov P.Zh., Kozhakhmetova E.P. (2016). Ekstremal’nye meteorologicheskie yavleniya v Kazakhstane v usloviyakh global’nogo potepleniya klimata. [Extreme meteorological phenomena in Kazakhstan in the context of global warming] // Nauchno-tekhnicheskii zhurnal «Gidrometeorologiya i ekologiya» – Scientific and technical journal “Hydrometeorology and Ecology”. № 2 (81). р. 7-19 (in Russian)
Kozhakhmetov P.Zh., Eleuova K.T., Baimagambetov B.O., Zhunisova M.A. (2015). Raionirovanie territorii Kazakhstana po temperaturnym vozdeistviya. [Zoning of the territory of Kazakhstan according to temperature effects] // Nauchno-tekhnicheskii zhurnal «Gidrometeorologiya i ekologiya» – Scientific and technical journal “Hydrometeorology and Ecology”. № 3 (78). р. 7-14 (in Russian)
Kozhenkova Z.P. (1976). Kurs lektsii po sinopticheskim metodam prognozov pogody. [Course of lectures on synoptic methods of weather forecasts] KazGU im. Kirova. Alma-ata – KazGU named after Kirov. Almaty, 126 р. (in Russian)
Luo D., Xiao Y., Yao Y., Dai A., Simmonds I., Franzke C.L.E. (2016). Impact of Ural Blocking on Winter Warm Arctic–Cold Eurasian Anomalies. Part I: Blocking-Induced Amplification. Journal of Climate, 29. 3925–3947. doi:10.1175/jcli-d-15-0611.1
Masato, G., Woollings, T., Hoskins B. J. (2014). Structure and impact of atmospheric blocking over the Euro-Atlantic region in present-day and future simulations, Geophysical Research Letters. 41. R. 1051–1058. https://doi.org/10.1002/2013GL058570
Mokhov I.I. (2021). Ekstremal’nye atmosfernye i gidrologicheskie yavleniya v rossiiskikh regionakh: svyaz’ s tikhookeanskoi desyatiletnei ostsillyatsiei [Extreme Atmospheric and Hydrological Phenomena in the Russian Regions: Connection with the Pacific Decadal Oscillation] // Doklady Rossiiskoi akademii nauk. Nauki o Zemle – Reports of the Russian Academy of Sciences. Earth Sciences. T. 500. № 2. р. 183-188 (in Russian)
Mokhov I. I., Akperov M. G., Prokof’eva M. A., Timazhev A.V., Lupo A.R., Le Tret E. (2013). Blokingi v severnom polusharii i evroatlanticheskom regione: otsenki izmenenii po dannym reanaliza i model’nym raschetam [Blockings in the Northern Hemisphere and the Euro-Atlantic Region: Estimates of Changes Based on Reanalysis and model calculations] // doklady akademii nauk – reports of the academy of sciences, T. 449. № 5. р. 1–5 (in Russian)
Mokhov I. I. (2016). Atmosfernye blokingi i svyazannye s nimi klimaticheskie anomalii. [Atmospheric blockings and related climatic anomalies. Nelinejnye volny- Nonlinear waves] https://docplayer.com/35005034-Atmosfernye-blokingi-i-svyazannye-s-nimi-klimaticheskie-anomalii.html (in Russian)
Mokhov I., Timazhev A. (2019). Atmospheric Blocking and Changes in its Frequency in the 21st Century Simulated with the Ensemble of Climate Models, Russ. Meteorol. Hydrol, p. 369–377. https://doi.org/10.3103/S1068373919060013.
Otsenochnyi doklad ob izmeneniyakh klimata na territorii Kazakhstana. [Assessment report on climate change in Kazakhstan] 2015. Astana: RGP «Kazgidromet» – Astana: RSE “Kazhydromet, 55 р. (in Russian)
Podnebesnykh N.V. (2020). Dolgovremennye izmeneniya atmosfernoi tsirkulyatsii nad Sibir’yu. [Long-term changes in atmospheric circulation over Siberia] // Optika atmosfery i okeana – Optics of the atmosphere and ocean. T. 33. № 02. р. 142–145. DOI: 10.15372/AOO20200209. (in Russian)
Petoukhov V., Semenov V.A. (2010). A Link between Reduced Barents-Kara Sea Ice and Cold Winter Extremes over Northern Continents. Journal of Geophysical Research, 115. doi:10.1029/2009jd013568
Shakina N.P., Ivanova A.R. 2010. Blokiruyushchie antitsiklony: sovremennoe sostoyanie issledovanii i prognozirovaniya [Blocking anticyclones: current state of research and forecasting] // Meteorologiya i gidrologiya – Meteorology and hydrology. № 11. р. 5-18. (in Russian)
Statisticheskie dannye RK s/kh «Sel’skoe, lesnoe i rybnoe khozyaistvo Kazakhstana 2004-2008», [Statistical data of the Republic of Kazakhstan with “Agriculture, forestry and fisheries in Kazakhstan 2004-2008”] /Statisticheskii sbornik – Statistical collection. – Astana 2009, Statisticheskoe agentstvo RK. (in Russian)
Tyrlis E., Manzini E., Bader J., Ukita J., Nakamura H., Matei D. (2019). Ural Blocking Driving Extreme Arctic Sea Ice Loss, Cold Eurasia, and Stratospheric Vortex Weakening in Autumn and Early Winter 2016–2017. Journal of Geophysical Research: Atmospheres, 124. 11313–11329.doi:10.1029/2019jd031085
Zaks L. (1976). Statisticheskoe otsenivanie. [Statistical estimation]M.: Statistika – Statistics, 598 р. (in Russian)
atmospheric blocking, atmospheric pressure, reanalysis, severe frost