Evaluating the impacts of climate change projections on streamflow in the Panjshir watershed
Rohullah Mayar a,b*, Mohammad Assem Mayar c, Mohammad Hamid Omar a
a Kabul Polytechnic University, Karte Mamourin, District 5, Kabul, 1001, Afghanistan
b Directorate of Agriculture and Livestock Adaptation to Climate Impacts, Ministry of Agriculture, Irrigation and Livestock, Jamal Mina, Kart-e-Sakhi, District 3, Kabul, 1001, Afghanistan
c Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, 15374, Germany
https://doi.org/10.29258/CAJWR/2025-R1.v11-2/1-25.eng
*e-mail: rohullah_mayar@yahoo.com
Mohammad Assem Mayar: assem.mayar@yahoo.com; Mohammad Hamid Omar: m.hamidomar@kpu.edu.af
Thematic cluster: Climate & Environment
Type of paper: Research paper

Abstract
Climate change represents a critical global concern affecting water resources both quantitatively and temporally. Afghanistan ranks among the top ten most vulnerable countries to climate change, with its water supply heavily reliant on snowmelt. Situated on the southern slopes of the central Hindu Kush Mountains, the Panjshir Basin contributes a significant amount of water to the Kabul River. This study has utilized the Soil and Water Assessment Tool (SWAT) Model to assess the effects of climate change on streamflow within the relatively pristine target watershed. Initially, the recently (2008-2023) collected flow data were compared against the baseline period (1960-1980) revealing declines up to 10.77%. Subsequently, the SWAT model underwent configuration, calibration and validation using the observed data, and was then applied to project future streamflow under two climate scenarios – SSP2-4.5 and SSP5-8.5 – across three future periods: near-future (2031-2050), future (2051-2070), and far-future (2071-2100). The study’s outputs point to a decreased streamflow under both scenarios – specifically 11.95% and 20.5% during the near-future interval, as well as 22.10% and 28.75% during the far-future interval, respectively, against the baseline. Moreover, the model shows a shift in peak discharge from June to April due to earlier snowmelt, which poses risks to agricultural water availability. Similar impacts are expected in nearby catchments in Afghanistan and high-altitude areas of the Hindu Kush-Himalayan system. The study’s findings underscore the urgency of adaptive water management strategies, including developing water storage, improving irrigation efficiency, and employing climate-resilient agricultural practices to mitigate potential climate change impacts.
Available in English
Download the article (eng)For citation:
Mayar, R., Mayar, M., Omar, M. (2025). Evaluating the impacts of climate change projections on streamflow in the Panjshir watershed. Central Asian Journal of Water Research, 11(2), 1–25. https://doi.org/10.29258/CAJWR/2025-R1.v11-2/1-25.eng
References
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014
Afghanistan – Climatology. (2021). https://climateknowledgeportal.worldbank.org/country/ afghanistan/climate-data-historical
Akhtar, F. (2017). Water availability and demand analysis in the Kabul River Basin , Afghanistan [Boon, Germany]. https://nbn-resolving.org/urn:nbn:de:hbz:5n-48249
Akhtar, F., Awan, U. K., Borgemeister, C., & Tischbein, B. (2021). Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132414025
Akhtar, F., Borgemeister, C., Tischbein, B., & Awan, U. K. (2022). Metrics Assessment and Streamflow Modeling under Changing Climate in a Data-Scarce Heterogeneous Region: A Case Study of the Kabul River Basin. Water (Switzerland), 14(11). https://doi.org/10.3390/w14111697
Almeida, R. A., Pereira, S. B., & Pinto, D. B. F. (2018). CALIBRATION AND VALIDATION OF THE SWAT HYDROLOGICAL MODEL FOR THE MUCURI RIVER BASIN SWAT-CUP. Associação Brasileira de Engenharia Agrícola, 4430, 55–63. https://doi.org/10.1590/1809-4430
Ambrosius, W. T. (2007). Topics in Biostatistics. Department of Biostatistical Sciences Wake Forest University Health Sciences Winston-Salem, NC.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.
Asharaf, R., & Kulkarni, A. V. (2023). Estimation of glacier depth and ice volume of Kabul Basin, Afghanistan. Journal of Earth System Science, 132(3). https://doi.org/10.1007/s12040-023- 02145-7
Awotwi, A., Annor, T., Anornu, G. K., Quaye-ballard, J. A., Agyekum, J., Ampadu, B., Nti, I. K., Anim, M., & Boakye, E. (2021). Journal of Hydrology : Regional Studies Climate change impact on streamflow in a tropical basin of Ghana , West Africa. Journal of Hydrology: Regional Studies, 34(March), 100805. https://doi.org/10.1016/j.ejrh.2021.100805
Ayoubi, T., Reinhardt-Imjela, C., & Schulte, A. (2024). Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin. Atmosphere, 15(3). https://doi.org/10.3390/atmos15030361
Azizi., A. H., & Asaoka, Y. (2020). Assessment of the Impact of Climate Change on Snow Distribution and River Flows in a Snow-Dominated Mountainous Watershed in the Western Hindukush–Himalaya, Afghanistan. Hydrology, 7(4), 1–24. https://doi.org/10.3390/hydrology7040074
Azizi A. H., Akhtar, F., Kusche, J., Tischbein, B., Borgemeister, C., & Agumba Oluoch, W. (2024). Machine learning-based estimation of fractional snow cover in the Hindukush Mountains using MODIS and Landsat data. Journal of Hydrology, 638(August 2023). https://doi.org/10.1016/j. jhydrol.2024.131579
Beven, K. (2020). Rainfall-runoff modelling. In Fluid Mechanics, Hydraulics, Hydrology and Water Resources for Civil Engineers (Second). John Wiley & Sons, Ltd. https://doi.org/10.1201/9780429423116-33
Bonn, C. M. (2009). Climate Change Impact on Sub-Saharan Africa. Deutsches Institut für Entwicklungspolitik, ISSN 1860-0441. www.die-gdi.de
Climate change and governance in Afghanistan. (2015). www.nepa.gov.af
CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (2021). Copernicus. https://doi.org/10.24381/cds.c866074c
Copernicus Digital Elevation Model – Copernicus Contributing Missions Online. (2022). https:// spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
Das, L., Bhowmick, S., Meher, J. K., & Mahdi, S. S. (2023). CMIP5 based past and future climate change scenarios over South Bihar, India. Journal of Earth System Science, 132(1). https://doi. org/10.1007/s12040-022-02016-7
European Space Agency. (n.d.). Copernicus Open Access Hub. https://scihub.copernicus.eu/dhus/#/ home
Dau, Q. V., Kuntiyawichai, K., & Adeloye, A. J. (2021). Future Changes in Water Availability Due to Climate Change Projections for Huong Basin, Vietnam. Environmental Processes, 8(1), 77–98. https://doi.org/10.1007/s40710-020-00475-y
FAO/UNESCO Soil Map of the World | FAO SOILS PORTAL | Food and Agriculture Organization of the United Nations. (1992). https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/ faounesco-soil-map-of-the-world/en/
FAO. (2019). Afghanistan drought risk managment strategy. https://www.fao.org/policy-support/ tools-and-publications/resources-details/en/c/1366257//
Food and Agriculture Organization. (n.d.). FAO Data Platform. https://data.apps.fao.org
Food and Agriculture Organization. (n.d.). FAO Soils Portal: Data Hub. https://www.fao.org/soils-portal/data-hub
FAO Map Catalog – Food and Agriculture Organization of the United Nations. (2020). https://data. apps.fao.org/map/catalog/static/search?keyword=Land use
Fuka, D. R., Walter, M. T., Macalister, C., Degaetano, A. T., Steenhuis, T. S., & Easton, Z. M. (2014). Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613–5623. https://doi.org/10.1002/HYP.10073
Idrizovic, D., Pocuca, V., Mandic, M. V., & Djurovic, N. (2020). Impact of climate change on water resource availability in a mountainous catchment : A case study of the Toplica River catchment , Serbia. Journal of Hydrology, 587(April), 124992. https://doi.org/10.1016/j.jhydrol.2020.124992
Immerzeel, W. W., Droogers, P., M, D. J. S., & P. Bierkens M F. (2010). Satellite Derived Snow and Runoff Dynamics in the Upper Indus River Basin. 10th International Symposium on High Mountain Remote Sensing Cartography, May 2014, 303–312.
IPCC. (2023). Climate Change 2023: Synthesis Report | UNEP – UN Environment Programme. https:// doi.org/10.59327/IPCC/AR6-9789291691647 Iqbal, M. S., Dahri, Z. H., Querner, E. P., & Khan, A. (2018). Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin. Geosciences, 5, 1–16. https://doi.org/10.3390/geosciences8040114
Iqbal, M. S., Dahri, Z. H., Querner, E. P., & Khan, A. (2018). Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin. Geosciences, 5, 1–16. https://doi.org/10.3390/ geosciences8040114
Mayar, M. A. (2021a). Global Warming and Afghanistan: Drought, hunger and thirst expected to worsen – Afghanistan Analysts Network – English. https://www.afghanistan-analysts.org/en/reports/ economy-development-environment/global-warming-and-afghanistan-drought-hunger-and-thirst-expected-to-worsen/
Mayar, M. A. (2021b). The Climate Change Crisis in Afghanistan: The catastrophe worsens – what hope for action? – Afghanistan Analysts Network – English. https://www.afghanistan-analysts.org/en/reports/ economy-development-environment/the-climate-change-crisis-in-afghanistan-the-catastrophe-worsens-what-hope-for-action/
Mayar, M. A., Asady, H., & Nelson, J. (2020). River flow analyses for flood projection in the Kabul River Basin. Central Asian Journal of Water Research, 6(1), 1–17. https://doi.org/10.29258/CAJWR/2020-R1. V6-1/1-17.ENG
Mengistu, D., Bewket, W., Dosio, A., & Panitz, H. (2021). Climate change impacts on water resources in the Upper Blue Nile ( Abay ) River Basin , Ethiopia. Journal of Hydrology, 592(April 2020), 125614. https://doi.org/10.1016/j.jhydrol.2020.125614
Moriasi D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
Nepal, S., Khatiwada, K. R., Pradhananga, S., Kralisch, S., Samyn, D., Bromand, M. T., Jamal, N., Dildar, M., Durrani, F., Rassouly, F., Azizi, F., Salehi, W., Malikzooi, R., Krause, P., Koirala, S., & Chevallier, P. (2021). Future snow projections in a small basin of the Western Himalaya. Science of the Total Environment, 795, 148587. https://doi.org/10.1016/j.scitotenv.2021.148587
Nepal, S., & Shrestha, A. B. (2015). Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature. International Journal of Water Resources Development, 31(2), 201–218. https://doi.org/10.1080/07900627.2015.1030494
Neto, A. R., Rolim, A., Marengo, J. A., & Chou, S. C. (2016). Hydrological Processes and Climate Change in Hydrographic Regions of Brazil, Journal of Water Resource and Protection, 1103–1127. https://doi. org/10.4236/jwarp.2016.812087
Ougahi, J. H., Karim, S., & Mahmood, S. A. (2022). Application of the SWAT model to assess climate and land use/cover change impacts on water balance components of the Kabul River Basin, Afghanistan. Journal of Water and Climate Change, 13(11), 3977–3999. https://doi.org/10.2166/wcc.2022.261
Rathjens, H., Bieger, K., Srinivasan, R., & Arnold, J. G. (2016). CMhyd User Manual: Documentation for preparing simulated climate change data for hydrologic impact studies. p.16p.
Sadrianzadeh, M., Kharazi, H. G., Eslami, H., Fathian, H., & Telvari, A. (2023). Impact of Climate Change on the Precipitation Trend and Phase in Snow-Dominated Mountain Basins (Central Zagros Mountains, Iran). Water Resources, 50(1), 48–57. https://doi.org/10.1134/S0097807823010141
Sajood, M. K., & Safi, A. G. (2020). Climate change impact on glacier lakes in Panjshir province of Afghanistan. Journal of Environmental Science Revolution, 1(1), 7–17. https://doi.org/10.37357/1068/ jesr/1.1.02
Sanjay, J., Krishnan, R., Shrestha, A. B., Rajbhandari, R., & Ren, G. Y. (2017). Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Advances in Climate Change Research, 8(3), 185–198. https://doi.org/10.1016/j.accre.2017.08.003
Shokory, J. A. N., Schaefli, B., Lane, S. N., Shokory, J. A. N., Schaefli, B., Lane, S. N., & Schaefli, B. (2023). Afghan water resources and related hazards under rapid climate warming : a review. https://doi.org/10.1080/02626667.2022.2159411
Sidiqi, M., Kasiviswanathan, K. S., Scheytt, T., & Devaraj, S. (2023). Assessment of Meteorological Drought under the Climate Change in the Kabul River Basin , Afghanistan. 1997, 1–33. https://doi. org/10.3390/atmos14030570
Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., Lauritzen, P. H., Marsh, D. R., Mills, M. J., Medeiros, B., & Richter, J. H. (2020). An Evaluation of the Large-Scale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research: Atmospheres, 125(13), 1–42. https://doi.org/10.1029/2020JD032835
Winchell, M., Srinivasan, R., Di Luzio, M., & Arnold, J. G. (2013). ArcSWAT user’s guide. 464. https:// swat.tamu.edu/media/1294/swatuserman.pdf
World Bank Group. (2021). Climate Change Knowledge Protal. Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/afghanistan/climate-data-historical
World Bank. (n.d.). Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org
Afghanistan, climate change, Kabul River Basin, streamflow, trends