HBV-modeling of the Ile Alatau mountain river flow

Tillakarim T. a,b* , Serikbay N. a,b*, Satmurzayev A. a, Sairov S. a

a RSE «Kazhydromet», Research center, 11/1 Mangilik El avenue, Astana, 020000, Republic of Kazakhstan
b Al-Farabi Kazakh National University, 71 Al-Farabi avenue, Almaty, 050040, Republic of Kazakhstan

*Corresponding author e-mail: tillakarim_t@meteo.kz

Serikbay N.: serikbay_n@meteo.kz; Satmurzayev A. : satmurzayev_a@meteo.kz; Sairov S.: sairov_s@meteo.kz

https://doi.org/10.29258/CAJWR/2024-R1.v10-1/1-20.rus

Abstract

The research aimed to evaluate the possibility of applying the HBV model for assessing the flow of the Ile Alatau Mountain Range rivers.  The main part of the corresponding water resources forms on the northern slopes of the Ile Alatau making them a significant water balance and water supply factor for the major cities of Almaty, Kaskelen, Talgar, and Yesik.  The article includes a brief description of the HBV model, as well as hydrometeorologicaland topographical inputs, and continues with the description of the flow simulation outputs for the rivers with the catchment area varying between 71-601 km2.  For the periods of 2000-2016, the model parameters were calibrated using the GAP optimization algorithm.  The model’s performance was evaluated based on several criteria: Nash-Sutcliffe Efficiency (NSE), Percent bias (PBIAS), and Root Mean Standard Deviation Ratio (RSR).  The selection of optimal parameters allowed obtaining the following model efficiency values: 0.80-0.93 (as per NSE), -0.78 to -15.33% (as per PBIAS), and 0.27–0.80 (as per RSR).  The calculated model efficiencies point to the sufficient correlation between the dynamics of the observed and simulated runoffs during the calibration period. The study likewise included the assessment of the HBV model applicability as a forecasting technique based on the  ratio.  The outcomes of that exercise confirmed the facility of using the model for predicting the runoff of the Kaskelen, Talgar, Ulken Almaty, and Kishi Almaty Rivers.  Due to the fact that the observation data were available only for 2020, the HBV model parameters of all the studied rivers, except the Talgar River, underwent validation for the periods of 2017-2020.  The calibrated and validated parameters of the obtained Ile Alatau Mountain River Model can be recommended for runoff modeling based on the HBV-light model as well as for runoff forecasting, namely for short- and medium-term water flow forecasts, with the exception of the Turgen, Prokhodnaya and Uzyn Kargaly River Basins.

Available in Russian

Download the article (rus)

For citation: Tillakarim, T., Serikbay N., Satmurzaev A., Sairov, S. (2024). Modelirovanie stoka gornyh rek Ilejskogo Alatau s primeneniem modeli HBV-light [HBV-MODELING OF THE ILE ALATAU MOUNTAIN RIVER FLOW]. Central Asian Journal of Water Research,  10(1), 1-20. https://doi.org/10.29258/CAJWR/2024-R1.v10-1/1-20.rus (in Russian)

References

Amirgalieva, A.S. (2021). Otsenka izmeneniia vodnykh resursov i perspektivy prognoza vodnosti osnovnykh rek Ile-Balkashskogo basseina v usloviiakh sovremennogo potepleniia klimata [Assessment of changes in water resources and prospects for water forecasts of the main rivers of the Ile-Balkash basin in the context of modern warming]. Dissertatsiia na soiskanie uchenoi stepeni doktora filosofii (PhD), Almaty, 140 (In Russian).

Bolatova, A.A., Tіllakarіm, T.A., Raimzhanova, M.N. i dr. (2018). Rezul’taty kalibrovanija gidrologicheskoj modeli HBV dlja gornyh rek Kazahstana [Results of calibration of HBV hydrological model for the Kazakhstan mountain rivers]. Gidrometeorologia i jekologija, 3 (90), 110-124 (In Russian).

Bolatova, A A., Tіllakarіm, T.A., Raimzhanova, M.N. (2019). Primenenie gidrologicheskoi modeli HBV dlja prognozirovanija stoka rek na primere bokovogo pritoka vody v Shul’binskoe vodohranilishhe [Using hydrological model HBV for forecasting river discharge on the example of the lateral water flow to the Shulbi reservoir]. Gidrometeorologija i jekologija, 3 (94), 26-43 (In Russian).

Borshch, S.V., Simonov, YU.A., Hristoforov, A.V. (2020). Effektivnost’ modelirovaniya i prognozirovaniya rechnogo stoka [Efficiency of river flow modelling and forecasting]. Gidrometeorologicheskie issledovaniya i prognozy. № 1 (375). 176-189 (In Russian).

Vinogradov, Ju. B. (1988). Matematicheskoe modelirovanie processov formirovanija stoka [Mathematical modeling of runoff formation processes]. Leningrad: Gidrometeoizdat (In Russian).

Galaeva, A.V. (2013). O vozmozhnosti primenenija modeli HBV dlja modelirovanija stoka rek ili i Irtysh [About the possibility of using the HBV model for modeling the flow of the Ili and Irtysh rivers]. Gidrometeorologija i jekologija, 2 (69), 108-114 (In Russian).

Kishkimbaeva, A.A., Bolatova, A.A. (2015). Primenenie modeli HBV-light dlja modelirovanija stoka reki Sharyn [Application of the HBV-light model for modeling the flow of the Sharyn River]. Gidrometeorologija i jekologija, 4(79), 141-144 (In Russian).

Kuchment, L.S., Motovilov, Ju.G., Nazarov, N.A. (1990). Chuvstvitel’nost’ gidrologicheskih sistem: vlijanie antropogennyh izmenenij bassejnov i klimata na gidrologicheskij cikl [Sensitivity of hydrological systems: the impact of anthropogenic changes in basins and climate on the hydrological cycle]. Moskva: Nauka (In Russian).

Nastavlenie po sluzhbe prognozov (1962). [Forecast Service Manual]. Razdel 3 Sluzhba gidrologicheskih prognozov. CHast’ 1 Prognozy rezhima vod sushi, L.: Gidrometeoizdat, 1962, 193 s. (In Russian).

Resursy poverhnostnyh vod SSSR. Central’nyj i Juzhnyj Kazahstan. (1970) [USSR surface water resources. Central and Southern Kazakhstan]. Tom 13, Vypusk 2. Bassejn oz. Balhash. Leningrad: Gidrometeoizdat, 1970, 35-40 s (In Russian).

Fedorovskij A.S. (1999). Regional’naja adaptacija modelej krugovorota vody [Regional adaptation of water cycle models]. Dissertacija, Dal’nevostochnyj gosudarstvennyj universitet. 24 s (In Russian).

Belay, B. Bizuneh, Mamaru, A. Moges, Berhanu, G. Sinshaw, Mulu, S. Kerebih. (2021). SWAT and HBV models’ response to streamflow estimation in the upper Blue Nile Basin, Ethiopia. Water-Energy Nexus, Volume 4, 41-53. https://doi.org/10.1016/j.wen.2021.03.001

Bergstörm, S. (1992). The HBV model – its structure and applications. SMHI Reports Hydrology, 4, 36.

Chen, Y., Li, W., Fang, G., and Li, Z. (2017). Hydrological modeling in glacierized catchments of central Asia – status and challenges. Hydrology and Earth System Sciences, 21, 669–684. https://doi.org/10.5194/hess-21-669-2017

Huang S., Eisner S., Magnusson J.O., Lussana Ch., Yang X., Beldring S. (2019). Improvements of the spatially distributed hydrological modelling using the HBV model at 1 km resolution. Norway Journal of Hydrology, Volume 577, 123585, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2019.03.051.

Kalashnikova, O., Niyazov, J., Nurbatsina, A., Kodirov, S., Radchenko, Yu., Kretova, Z., (2023). Kyrgyz transboundary rivers’ runoff assessment (Syr-darya and Amu-darya river basins) in climate change scenarios. Central Asian Journal of Water Research9 (1), 59-88. https://doi.org/10.29258/CAJWR/2023-R1.v9-1/59-88.eng

Lindström, G., Bergström, S. (1992). Improving the HBV and PULSE-models by use of temperature anomalies. Vannet i Norden, 25(1), 16–23.

Merkuryeva, G., Merkuryev, Y., Boris V. Sokolov, Potryasaev, S., Viacheslav A. Zelentsov, Lektauers, A. (2015). Advanced river flood monitoring, modelling and forecasting. Journal of Computational Sciences, 10, 77-85. https://doi.org/10.1016/j.jocs.2014.10.004

Moriasi, М., D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE50(3), 885-900. doi: 10.13031/2013.23153

Nash, J.E., Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6

Pervin, L., Gan, T.Y., Scheepers, H., Islam, S. (2021). Application of the HBV model for the future projections of water levels using dynamically downscaled global climate model data. Journal of Water and Climate Change. 12 (6): 2364–2377. doi: https://doi.org/10.2166/wcc.2021.302

Seibert, J. (2005). HBV light version 2. User`s manual. Stockholm University, Department of Physical Geography and Quaternary Geology. P.32.

Seibert, J. (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences, 4(2), 215-217. https://doi.org/10.5194/hess-4-215-2000

Wang, G., Zhang, J., He, R., Liu, C., Ma, T., Bao, Z. & Liu, Y. (2017). Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stochastic Environmental Research and Risk Assessment 31 (4), 1011–1021.

Wang, Yueyang, Wang, Yanjun, Wang, Yan, Li, Ch., Ju, Q,, Jin,J., Deng, X., Sun, Zhenxin Bao Gaoxia. (2023). Applicability of the HBV model to a human-influenced catchment in northern China. Hydrology Research. 54 (2): 208–219. doi: https://doi.org/10.2166/nh.2023.092

Wilk, J., Andersson, L. and Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in northeast Thailand. Hydrological Processes, 15, 2729-2748.

WMO, Carlos E.M. Tucci (2002). Flood flow forecasting. Institute of Hydraulic Research, Federal University of Rio Grande do Sul, 35 p.

WMO. (2012). Rukovodstvo po gidrologicheskoj praktike [Hydrological Practice Guide]. Tom 2. Upravlenie vodnymi resursami i praktika primenenija gidrologicheskih metodov (VMO-№ 168, Shestoe izdanie). Zheneva: Vsemirnaja meteorologicheskaja organizacija, 320 s (In Russian). Ofitsialnyi resurs bazy dannykh Globalnogo izmereniia sukhoputnogo lda iz kosmosa [Official resource of the Global Land Ice Measurement Database from Space] https://www.glims.org/

calibration, efficiency of model, hydrological modeling, Ile Alatau, validation

Leave a Reply