Heavy metals in fresh waters of Kazakhstan and methodological approaches to developing a regional water quality classification

Krupa E.1*, Barinova S. 2, Romanova S.3, Aubakirova M.3, Ainabaeva N.1

1 Republican State Enterprise (RSE) on the Right of Economic Management “Institute of Zoology”, Science

  Committee of the Ministry of Education and Science, Kazakhstan, 050060, Almaty, Al-Farabi Ave., 93

2 Institute of Evolution, University of Haifa, Mount Carmel, Israel, 3498838, Haifa, Abba Khoushi Ave., 199

3Al-Farabi Kazakh National University, Ministry of Education and Science, Kazakhstan, 050000, Almaty,  Al-Farabi Ave., 93

* Corresponding author: elena_krupa@mail.ru 

Barinova S.: barinova@research.haifa.ac.il; Romanova S.: Sofya.romanova@kaznu.kz; Aubakirova M.: judo_moldir@mail.ru; Ainabaeva N.: naziya_06@mail.ru

https://doi.org/10.29258/CAJWR/2020-R1.v6-2/19-41.eng

Research Article

Abstract

The study aimed to define the classes in the Heavy Metals Section of the Regional Environmental Ranking System based on long-term data (1997-2017).  When distinguishing water quality classes, the following factors were taken into account: background content of heavy metals, content of heavy metals in water bodies exposed to different levels and character of anthropogenic pollution, and response of biological communities to toxic pollution of their natural habitats.  According to the proposed classification, the non-contaminated water of Сlass 1 contains the following: Cd<0.2, Cu<2.5, Zn<4, Pb<3, Cr<0.5, and Ni<0.5 μg dm-3.  Class 2 water is characterized by Cd<0.5, Cu<6, Zn<6, Pb<7, Cr<1, and Ni<2 μg dm-3 content.  Moderately polluted water of Class 3 contains Cd<3, Cu<10, Cr<10, Ni<10, Zn<20, and Pb<20 μg dm-3.  Concentrations of all heavy metals increase proportionally and exceed 30-100 μg dm-3 in the most polluted water of Class 6.  The proposed methodological approach assesses not only the local content of heavy metals in water bodies of Kazakhstan but also the degree of toxic pollution of their vast catchment basins.  The proposed methods are applicable to other arid regions with similar physical and climatic conditions.

Download the article

How to cite: Krupa, E., Barinova, S., Romanova, S., Aubakirova, M., & Ainabaeva, N. (2020). Heavy Metals in Fresh Waters of Kazakhstan and Methodological Approaches to Developing a Regional Water Quality Classification. Central Asian Journal of Water Research, 6(2), 19–41. https://doi.org/10.29258/cajwr/2020-r1.v6-2/19-41.eng

References

  1. Aazami, J., Sari, E.A., Abdoli, A., Sohrabi, H. & Van den Brink, P.J., 2015.  Ecological Quality Assessment of the Tajan River in Iran using a Multimetric Macroinvertebrate Index and Species Traits, Environmental Management, 56, 260-269.  Available at:  https://doi.10.1007/s00267-015-0489-x
  2. Abuduwaili, J., Zhaoyong, Zh. & Fengqing, J., 2015.  Evaluation of pollution and human health risks from heavy metals in the atmospheric dust in the Ebinur Basin in Northwest China, Environmental Science and Pollution Research, 22, 14018-14031.  Available at:  https://doi.10.1007/s11356-015-4625-1
  3. Al-Shami, S.A., Che Salmah, M.R., Hassan, A.A. & Siti Azizah, M.N., 2011.  Evaluation of mentum deformities of Chironomus spp. (Chironomidae: Diptera) larvae using the Modified Toxic Score Index (MTSI) to assess the environmental stress in the Juru River Basin, Penang, Malaysia, Environmental Monitoring and Assessment, 177, 233-244.  Available at: https://doi.org/10.1007/s10661-010-1630-1
  4. Bácsi, I., Novák, Z., Jánószky, M., B-Béres, V., Grigorszky, I. & Nagy, S.A., 2015.  The sensitivity of two Monoraphidium species to zinc: their possible future role in bioremediation, International Journal of Environmental Science and Technology, 12, 2455-2466.  Available at: https://doi.org/10.1007/s13762-014-0647-3
  5. Baidal, М.Х., 1964.  Dolgosrochnoye meteorologicheskoje prognozirovaniye i klimaticheskiye izmeneniya v Kazakhstane [Long-term weather forecasts and climate variations in Kazakhstan], Leningrad, Russia, Gidrometeoizdat.  [In Russian]
  6. Barinova, S. & Krassilov, V.A., 2012.  Algal diversity and bio-indication of water resources in Israel, International Journal of the Environment and Resources, 1(2), 62-72
  7. Barinova, S. & Krupa, E., 2017a.  Critical environmental factors for photosynthetic organisms of the Shardara Reservoir, Kazakhstan, Bulletin of Advanced Scientific Research 2(5), 17-27
  8. Barinova, S. & Krupa, E., 2017b.  Bioindication of the Ecological State and Water Quality of the Phytoplankton in the Shardara Reservoir, Kazakhstan, Environment and Ecology Research, 5, 73-92.  Available at: https://doi.10.13189/eer.2017.050201
  9. Barinova, S., 2011.  The effect of altitude on the spread of freshwater algae in continental Israel, Current Topics in Plant Biology, 12, 89-95
  10. Barinova, S., 2017a.  Ecological Mapping in Application of the Aquatic Ecosystem Bioindication: Problems and Methods, International Journal of Environmental Sciences and Natural Resources, 3(2), 1-7.  Available at: https://doi.10.19080/IJESNR.2017.03.555608
  11. Barinova, S., 2017b.  Empirical Model of the Functioning of Aquatic Ecosystems, International Journal of Oceanography and Aquaculture, 2(2), 1-8.  Available at: https://doi.10.19080/IJESNR.2017.02.555581
  12. Barinova, S., 2017c.  Aberrant Forms of Algae and Bioindication of the Aquatic Ecosystem State, International Journal of Oceanography, and Aquaculture, 1(3), 1-7
  13. Barinova, S., 2017d.  On the Water Quality Classification from an Ecological Point of View, International Journal of Environmental Sciences and Natural Resources, 2(2), 1-8. Available at: https://doi.10.19080/IJESNR.2017.02.555581
  14. Barinova, S., Krupa, E., & Romanova, S., 2018.  The role of planktonic algae in the ecological assessment of storage-reservoirs of the Ile-Balkhash basin (Kazakhstan), Transylvanian Review of Systematical and Ecological Research.  The Wetlands Diversity, 20(2), 1-14.  Available at: https://doi.org/10.2478/trser-2018-0001
  15. Barrett, T., Feola, G., Khusnitdinova, M. & Krylova, V., 2017.  Adapting Agricultural Water Use to Climate Change in a Post-Soviet Context: Challenges and Opportunities in Southeast Kazakhstan, Human Ecology, 45, 747-762.  Available at:https://doi.org/10.1007/s10745-017-9947-9
  16. Bhattacharyay, G., Sadhu, A.K., Mazumdar, A. & Chaudhuri, P.K., 2005.  Antennal deformities of chironomid larvae and their use in biomonitoring of heavy metal pollutants in the Damodar River of West Bengal, Indian Environmental Monitoring and Assessment, 108, 67-84.  Available at: https://doi.10.1007/s10661-005-3963-8
  17. Bhutiani, R., Kulkarni, D.B., Khanna, D.R. & Gautam, A., 2017.  A geochemical distribution and an environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India, Energy, Ecology, and the Environment, 2(2), 155-167.  Available at: https://doi.10.1007/s40974-016-0019-6
  18. Bin, H., 2014.  Oil and gas cooperation between China and Central Asia in an environment of political and resource competition, Petroleum Science, 11, 596-605.  Available at: https://doi.10.1007/s12182-014-0377-7
  19. Bulgakov, N.G., 2004.  Ecologically tolerable impact levels of abiotic factors in water bodies of Russia and the neighboring countries: dependence on geographic and climatic conditions, Water Resources, 31(2), 174-179.  Available at: https://doi.org/10.1023/ B:WARE.000
  20. Burlibayeva, D.M., Burlibayev, M.Zh., Opp, Ch. & Bao, A., 2016.  Regime dynamics of hydrochemical and toxicological parameters of the Irtysh River in Kazakhstan, Journal of Arid Land, 8(4), 521-532.  Available at: https://doi.10.1007/s40333-016-0083-y
  21. Caporale, A.G. & Violante, A., 2016.  Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments, Current Pollution Reports, 2, 15-27.  Available at: https://doi.10.1007/s40726-015-0024-y
  22. Chernova, O.V. & Beketskaya, O.V., 2011.  Permissible and Background Concentrations of Pollutants in Environmental Regulation (Heavy Metals and Other Chemical Elements), Eurasian Soil Science, 44(9), 1008-1017.  Available at: https://doi.org/10.1134/ S106422931
  23. Dembowska, E. A., Mieszczankin, T. & Napiórkowski, P., 2018.  Changes of the phytoplankton community as signs of deterioration in the quality of water in a shallow lake, Environmental Monitoring Assessment, 190(95), 1-11.  Available at: https://doi.org/ 10.1007/s10661-018-6465-1
  24. European Water Framework Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for community action in the field of water policy, 2000. Official Journal of the European Communities, 1-72
  25. Evers, M., 2016.  Integrative river basin management: challenges and methodologies within the German planning system, Environmental Earth Science, 75, 1085.  Available at: https://doi.org/10.1007/s12665-016-5871-3
  26. Frumin, G.T. & Krashanovskaya, Yu.V., 2014.  Otsenka troficheskogo statusa ozer Kazakhstana [Assessment of the trophic status of the lakes of Kazakhstan], Ecological chemistry, 23(1), 8-12.  [In Russian]
  27. Giakoumis, T. & Voulvoulis, N., 2018.  The transition of EU water policy towards the Water Framework Directive’s integrated river basin management paradigm, Environmental Management, 62, 819-831.  Available at: https://doi.org/10.1007/s00267-018-1080-z
  28. Glantz, S.A., 1999.  Osnovy BIOSTATISTIKI [Basics of BIOSTATISTICS], Moscow, Russia, Practice.  [In Russian];
  29. Gorbunova, N.S. & Stulin, A.F., 2016.  Soderzhanie tyazhelyh metallov pri dlitelnom primenenii udobrenij pri agrocenoze kukuruzy na vyshchelochennyh chernozemah [The heavy metal content with prolonged use of fertilizers in agrocoenosis of maize on leached black soils], Bulletin of Volgograd State University, “Chemistry, Biology, Pharmacy” Series, 4, 49-54.  [In Russian]
  30. Guo, L., Zhou, H., Xia, Z. & Huang, F., 2016.  Evolution, opportunity and challenges of transboundary water and energy problems in Central Asia, Springer Plus, 5, 2018.  Available at: https://doi.org/10.1186/s40064-016-3616-0
  31. Guseva, Т.V. (Ed.), 2002.  Gidrohimicheskiye parametry sostoyania okruzhayushchej sredy [Hydrochemical parameters of the state of the environment], Moscow, Russia, Socio-Ecological Union.  [In Russian]
  32. Haddaway, N. R., Bernes, C., Jonsson, B-G. & Hedlund, K., 2016.  The benefits of systematic mapping to evidence-based environmental management, Ambio, 45, 613-620.  Available at: https://doi.org/10.1007/s13280-016-0773-x
  33. He, B., Yun, Z. J., Shi, J. B. & Gui Bin, J., 2013.  Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity, Chinese Science Bulletin, 58, 134-140.  Available at: https://doi.org/10.1007/s11434-012-5541-0
  34. Hoppe, S., Sundbom, M., Borg, H. & Breitholtz, M., 2015.  Predictions of Cu toxicity in three aquatic species using bioavailability equipment in four Swedish soft freshwaters, Environmental Sciences Europe, 27(25), 1-10.  Available at: https://doi.10.1186/s12302-015-0058-1
  35. Huang, J., Amuzu-Sefordzi, B. & Li, M., 2015.  Heavy metals and polychlorinated biphenyls (PCBs) sedimentation in the Lianhua Mountain Reservoir, Pearl River Delta, China, Environmental Monitoring Assessment, 187(254).  Available at: https://doi.10. 1007/s10661-015-4466-x;
  36. Huang, Y., Zhang, D., Xu, Zh., Yuan, Sh., Li, Y. & Wang, L., 2017.  Effect of overlying water pH, dissolved oxygen, and temperature on heavy metal emission from river sediments under laboratory conditions, Archives of Environmental Protection, 43(2), 28-36.  Available at: https://doi.10.1515/aep-2017-0014
  37. Interstate Standard 31 870-2012, 2013.  Pityevaya voda. Opredeleniye soderzhaniya elementov metodami atomnoj spektrometrii [Drinking water.  Determination of elements content by atomic spectrometry methods]. Moscow, Russia: Standardinform.  [In Russian];
  38. Karthe, D., Abdullayev, I., Boldgiv, B., Borchardt, D., Chalov, S., Jarsjo, J., Li, L. & Nittrouer, J A., 2017.  Water in Central Asia: an integrated assessment for science-based management, Environmental Earth Sciences, 76(690), 1-15.  Available at: https://doi.10. 1007/s12665-017-6994-x;
  39. Khamidov, A., Helming, K. & Balla, D., 2016.  Impact of agricultural land use in Central Asia: a review, Agronomy for Sustainable Development, 36(6), 1-23.  Available at:  https://doi.10.1007/s13593-015-0337-7
  40. Krupa, E. G., Stuge, T. S., Lopareva, T. Ya. & Shaukharbayeva, D.S., 2008.  Distribution of Planktonic Crustaceans in Lake Balkhash in Relation to Environmental Factors, Journal of Inland Water Biology, 1(2), 150-157.  Available at: http://dx.doi.org/10.1134/ S1995082908020077
  41. Krupa, E., Barinova, S. & Romanova, S., 2019.  The role of natural and anthropogenic factors in the distribution of heavy metals in the water bodies of Kazakhstan, Turkish Journal of Fisheries and Aquatic Sciences, 19(8), 707-718.  Available at: https://doi.org/ 10.4194/1303-2712-v19_8_09
  42. Krupa, E.G. & Barinova, S.S., 2016.  Environmental variables regulating the phytoplankton structure in high mountain lakes, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(4), 1251-1261
  43. Krupa, E.G. & Barinova, S.S., 2017.  Ispolzovanie strukturnyh pokazatelej gidrocenozov v otsenke ekologicheskogo sostoyaniya vodnyh obyektov Kazahstana [Use of structural variables of hydrocenoses in the assessment of the ecological state of water bodies in Kazakhstan].  In The Third International Conference “Bioindication in monitoring freshwater ecosystems” (pp. 165-170), St. Petersburg, Russia, Institute of Lake Sciences, Russian Academy of Sciences.  [In Russian]
  44. Krupa, E.G. Romanova S.M. & Imentai A.K., 2016b.  Gidrohimicheskaya i toksikologicheskaya harakteristika ozer Nacionalnogo prirodnogo parka «Kulsaj kolderi» (Kungej Alatau, Yugo-Vostochnyj Kazakhstan) [Hydrochemical and toxicological characteristics of the lakes of the National Natural Park “Kulsay kolderi” (Kungei Alatau, South-East Kazakhstan)], Nature Conservation Research.  Zapovednaya Nauka 1(1), 2-10.  Available at: http://dx.doi.org/10.24189/ncr.2016.001.  [In Russian]
  45. Krupa, E.G., 1998.  On the deviations in the morphology Acanthocyclops americanus Marsh and Cyclops vicinus Uljanin (Crustacea, Copepoda) from the polluted water bodies of Almaty region (Southeastern Kazakhstan), Russian Journal of Aquatic Ecology, 7, 11-16
  46. Krupa, E.G., 2005.  Population densities, adult sex ratios, and occurrence of malformations in three species of Cyclopoid copepods in water bodies with different degrees of eutrophy and toxic pollution, Journal of Marine Science and Technology, 13(3), 226-237
  47. Krupa, E.G., 2008. Acanthocyclops trajani Mirabdullayev et Defaye (Copepoda, Cyclopoida) kak indicator ekologicheskogo sostoyaniya vodoyomov Kazakhstana [Acanthocyclops trajani Mirabdullayev et Defaye (Copepoda, Cyclopoida) as an indicator of the ecological state of the reservoirs of Kazakhstan].  In the Proceedings of the All-Russian Conference on water toxicology “Anthropogenic impact on aquatic organisms and ecosystems” (pp. 56-58), Borok, Russia, The Yaroslavl Printing Yard.  [In Russian]
  48. Krupa, E.G., 2011.  Strukturnaya harakteristika zooplanktona ozer Kazahstana v usloviyah antropogennogo vozdejstviya [Structural zooplankton description of Kazakhstan’s lakes under conditions of anthropogenic impact].  In the Modern methods of research and assessment of water quality, the state of aquatic organisms and ecosystems under the anthropogenic impact (pp. 35-39), Borok, Russia, TR-print.  [In Russian]
  49. Krupa, E.G., 2012.  Zooplankton loticheskih i limnicheskih ekosistem Kazakhstana. Struktura, zakonomernosti formirovaniya [Zooplankton of limnic and lotic ecosystems of Kazakhstan.  Structure, patterns of formation], Saarbrucken, Germany, Palmarium Academic Publishing.  [In Russian]
  50. Krupa, E.G., 2014.  Sravnitelnaya harakteristika zooplanktona vodoyemov Kazakhstana v usloviyah organicheskogo i smeshannogo zagryazneniya [Comparative zooplankton description of Kazakhstan’s reservoirs in conditions of organic and mixed pollution].  In the Anthropogenic impact on aquatic organisms and ecosystems (pp.142-146), Borok, Russia, The Yaroslavl Printing Yard.  [In Russian]
  51. Krupa, E.G., 2015.  Metodologicheskie podhody i problemy otsenki ekologicheskogo sostoyaniya vodnyh obyektov [Methodological approaches and problems of assessing the ecological state of water bodies], Ecology and Industry of Kazakhstan, 2(46), 59-62.  [In Russian]
  52. Krupa, E.G., Amirgaliyev, N.A., Gogol, L.A., Klimov, F.V. & Tereshchenko, A.S., 2006.  Zooplankton reki Syrdarya v usloviyah nestabilnogo gidrologicheskogo, gidrohimicheskogo i toksikologicheskogo sostoyanij [Zooplankton of the Syrdarya River in conditions of unstable hydrological, hydrochemical and toxicological states].  In the Proceedings of the Conference “Great Rivers and World Civilizations” (pp. 385-391), Astrakhan, Russia, Astrakhan State University.  [In Russian]
  53. Krupa, E.G., Barinova, S.M., Romanova, S.M. & Malybekov, A.B., 2016a.  Hydrobiological assessment of high mountain Kolsay Lakes (Kungey Alatau, Southeastern Kazakhstan) ecosystems in climatic gradient, British Journal of the Environment and Climate Change, 6(4), 259-278.  Available at: http://dx.doi.org/10.9734/BJECC/2016/26496
  54. Krupa, E.G., Barinova, S.S, Isbekov, K.B., Tsoy, V.N., Assylbekova, S.Z. & Sharipova, O.A., 2017a.  Influence of chemical water composition on spatial distribution of phytoplankton in the Balkhash Lake (Kazakhstan), Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(5), 396-411
  55. Krupa, E.G., Barinova, S.S., Amirgaliyev, N.А., Issenova, G. & Kozhabayeva, G., 2017b.  Statistical approach to estimate the anthropogenic sources of potentially toxic elements on the Shardara Reservoir (Kazakhstan), Ecology and Environmental Science, 2(1), 1-12.  Available at: http://dx.doi.org/10.15406/mojes.2017.02.00012
  56. Krupa, E.G., Barinova, S.S., Assylbekova, S.Z. & Isbekov, K.B., 2018.  Structural indicators of zooplankton of the Shardara Reservoir (Kazakhstan) and the main influencing factors, Turkish Journal of Fisheries and Aquatic Sciences, 18, 659-669.  Available at:  https://doi.10.4194/1303-2712-v18_5_02
  57. Krupa, E.G., Barinova, S.S., Tsoy, V.N., Lopareva, T.Y. & Sadyrbaeva, N.N., 2017c.  Spatial analysis of hydrochemical and toxicological variables of the Balkhash Lake, Kazakhstan, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(3), 1827-1839
  58. Lee, S.H., Kim, I., Kim, K.W. & Lee, B.T., 2015.  Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay, Springer Plus, 4(518), 1-13.  Available at: https://doi.10.1186/s40064-015-1311-1
  59. Li, H., Shi A., Li, M. & Zhang, X., 2013.  Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments, Journal of Chemistry, 1-11.  Available at: http://dx.doi.org/10.1155/2013/434012
  60. Matishev, G.G., Kreneva, S.V., Muraveyko, V.M., Shparkovskiy, I.A. & Ilyin, G.V., 2003.  Biotestirovanie i prognoz izmenchivosti vodnyh ekosistem v usloviyah antropogennogo zagryazneniya [Biotesting and forecast of the variability of aquatic ecosystems under anthropogenic pollution], Apatity, Russia, Korel Scientific Center of the Russian Academy of Sciences. [In Russian]
  61. Mazurov, A.K., 2005.  Metallogenicheskoe rajonirovanie Kazakhstana [Metallogenic zoning of Kazakhstan].  In the Proceedings of Tomsk Polytechnic University, 308(4), 33-39.  [In Russian]
  62. Mottana, A., Carra, S. & Doglioni, C., 2016.  Levels of water and natural soil pollution in Italy, Rendiconti Lincei-Scienze, 27, 3-6.  Available at: https://doi.10.1007/s12210-015-0496-0
  63. Neamtu, M., Ciumasu, I. M., Costica, N., Costica M., Bobu, M., Nicoara, M. N. et al., 2009.  Chemical, biological, and eco-toxicological assessment of pesticides and persistent organic pollutants in the Bahlui River, Romania, Environmental Science and Pollution Research, 16, 76-85.  Available at: https://doi.10.1007/s11356-009-0101-0
  64. Novikov, M.A. & Draganov, D.M., 2017.  Kompleksnyj metodicheskij podhod k opredeleniyu fonovyh znachenij soderzhaniya mikroelementov v vodnyh massah Barentseva morya dlya obraztsov Cd, Co, Cu i Ni [Complex methodological approach to the determination of background values of trace element content in the water masses of the Barents Sea for the samples of Cd, Co, Cu and Ni], Vestnik Kraunts. Earth Science, 2(34), 37-48.  [In Russian]
  65. Ojekunle, O.Z., Ojekunle, O.V., Adeyemi, A.A., Taiwo, A.G., Sangowusi, O.R., Taiwo, A.M. & Adekitan, A.A., 2016.  Evaluation of surface water quality indicators and ecological risk assessment of heavy metals in scrapyard neighborhood, Springer Plus, 5(560), 1-16.  Available at: https://doi.10.1186/s40064-016-2158-9
  66. Oliveira, C.D., 1999.  Morphological abnormalities of Acartia lilljeborgi (Copepoda, Crustacea) in the Espírito Santo Bay (E.S. Brazil), Hydrobiologia, 394, 249-251.  Available at: https://doi.org/10.1023/A:100350262
  67. Porkka, M., Kummu, M., Siebert, S. & Flörke, M., 2012.  The role of virtual water flows in physical water scarcity: the case of Central Asia, Water Resources Development, 28(3), 453-474.  Available at: https://doi.10.1080/07900627.2012.684310
  68. Protasov, A., Barinova, S., Novoselova, T., Sylaieva, A., 2019.  The aquatic organisms diversity, community structure, and environmental conditions, Diversity, 11, 190-207. Available at: https://doi.org/10.3390/d11100190
  69. Reutova, N.V., 2015.  Mutagenic potential of some heavy metals, Ecological Genetics, 13(3), 70-75.  Available at: https://doi.org/10.1134/S2079059717020101
  70. Rijswick, M., Gilissen, H. K. & Van Kempen, J., 2010.  The need for international and regional transboundary cooperation in European river basin management as a result of new approaches in EC water law, ERA Forum, 11, 129-157.  Available at:  https://doi.org/10.1007/s12027-009-0145-0;
  71. Romanenko, V.D., Oksiuk, O.P., Zhukinsky, V.N., Stolberg, F.V. & Lavrik, V.I., 1990.  Ekologicheskaya otsenka vozdejstviya gidrotekhniki na vodnye obyekty [Environmental impact assessment of hydraulic engineering on water bodies], Kiev, Ukraine, Naukova Dumka.  [In Russian]
  72. Romanova, S.M., Dostay, Zh.D. & Tursunov, E.A., 2012. Vodnye resursy Kazakhstana: otsenka, prognoz, upravlenie.  Resursy rechnogo stoka Kazakhstana.  Kachestvo poverhnostnyh vod Kazakhstana i voprosy mezhdunarodnogo vododeleniya [Water resources of Kazakhstan: estimation, forecast, management.  Resources of the river flow of Kazakhstan.  Quality of surface waters of Kazakhstan and international water allocation issues], Almaty, Kazakhstan, Geography Institute of the Ministry of Education and Science of the Republic of Kazakhstan.  [In Russian]
  73. Sappa, G., Ergul, S. & Ferranti, F., 2014.  Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic-contaminated groundwater systems of Viterbo Area, (Central Italy), Springer Plus, 3(1), 237.  Available at: https://doi.org/ 10.1186/2193-1801-3-237
  74. Serra, A., Guasch, H., Admiraal, W., Van der Geest, H.G. & Van Beusekom, S.A.M., 2010.  Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors, Ecotoxicology, 19, 770-780.  Available at: https://doi.10.1007/s10646-009-0454-7
  75. Shvartsev, S.L, 2008.  Geochemistry of fresh groundwater in the main landscape zones of the Earth, Geochemistry International, 46(13), 1285-1398.  Available at: https://doi.org/ 10.1134/S001670290
  76. Slivinsky, G.G. & Krupa, E.G., 2013.  Sovremennoe sostoyanie ozer Teniz-Korgalzhyn po gidrohimicheskim i toksikologicheskim pokazatelyam [The current state of the Teniz-Korgalzhyn Lakes according to hydrochemical and toxicological parameters], Bulletin of Kazakh National UniversityEcological Series,  1(37), 74-81.  [In Russian]
  77. Solodukhin, V.P., Poznyak, V.L., Kabirova, G.M., Ryazanova, L.A., Lennik, S.G., Liventsova, A.S. et al., 2016b.  Radionuclides and toxic chemical elements in transboundary Kyrgyzstan-Kazakhstan rivers, Journal of Radioanalytical and Nuclear Chemistry, 309, 115-124.  Available at: https://doi.10.1007/s10967-016-4817-2
  78. Talalaj, I.A. & Biedka, P., 2016.  Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites, Environmental Science and Pollution Research, 23, 24601-24613.  Available at: https://doi.10.1007/s11356-016-7622-0
  79. Tyumenev, S.D., 2008. Vodnye resursy i vodosnabzhenie territorii Kazakhstana [Water resources and water supply of the territory of Kazakhstan], Almaty, Kazakhstan, Kazakh National Technical University.  [In Russian]
  80. Volkov, I.V., Zalicheva, I.N. & Ganina, V. S., 1993.  Principy regulirovaniya antropogennoj nagruzki na vodnye ekosistemy [Regulation principles of anthropogenous load on water ecosystems],  Water Resources, 20(6), 457-462.  [In Russian]
  81. Woszczyk, M., Spychalski, W. & Boluspaeva, L., 2018.  Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan – implications for the assessment of environmental quality, Environmental Monitoring and Assessment, 190(362), 1-16.  Available at: https://doi.org/10.1007/s10661-018-6733-0
  82. Yin, W., Fan, Z., Zheng, J., Jiquan Y., Mingjun Zh., Xiaofeng Sh., Jianjun G., Qiyan L. & Yaping L., 2012.  Characteristics of strike-slip inversion structures of the Karatau fault and their petroleum geological significances in the South Turgay Basin, Kazakhstan, Petroleum Science, 9, 444-454.  Available at: https://doi.org/10.1007/s12182-012-0228-3
  83.  Yu, Y., Pi, Y., Yu, X., Ta, Zh., Sun, L., Disse, M., Zeng, F., Li, Y., Chen, X. & Yu, R., 2018.  Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years, Journal of Arid Land.  Available at:  https://doi.org/10.1007/s40333-018-0073-3
  84. Zeng, Y., Wang, L., Jiang, L., Cai, X. & Li, Y., 2015.  Joint Toxicity of Lead, Chromium, Cobalt and Nickel to Photobacterium phosphoreum at no observed effect concentration, Bulletin of Environmental Contamination and Toxicology, 95, 260-264.  Available at:  https://doi.10.1007/s00128-015-1568-7
  85. Zhao, G., Ye, S., Yuan, H., Ding, X. & Wang, J., 2017.  Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China, Environmental Science and Pollution Research, 24, 2966-2979.  Available at: https://doi.10.1007/s11356-016-8003-4
  86. Zhaoyong, Zh., Abuduwaili, J. & Fengqing, J., 2015.  Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China, Environmental Monitoring and Assessment, 187(33).  Available at: https://doi.10.1007/ s10661-014-4191-x

catchment basin, classification criteria, fresh water bodies, toxic pollution