High-resolution dynamic downscaling of historical and future climate projections over Central Asia

Erkin Isaev a,d , Akihiko Murata b , Shin Fukui b , Roy C. Sidle a,c

a Mountain Societies Research Institute, University of Central Asia, Toktogul St., 138, Bishkek, 720001, Kyrgyz Republic
b Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
c Tokyo University of Agriculture and Technology, Fuchu, 7293212, Japan
d Food and Agriculture Organization of the United Nations, Bangkok, 10700, Thailand

E-mail: erkiwa@gmail.com

Akihiko Murata: amurata@mri-jma.go.jp; Shin Fukui: sfukui@mri-jma.go.jp; Roy C. Sidle: roy.sidle@ucentralasia.org

https://doi.org/10.29258/CAJWR/2024-R1.v10-1/91-114.eng

Abstract

Climate change poses various challenges for agriculture and water management practices in Central Asia (CA). Central to these challenges are cryosphere dynamics, fragile mountain ecosystems, and ongoing natural hazards that highlight the need for robust projections of regional climate change. For the first time, dynamic downscaling was conducted in Central Asia at a spatial resolution of 5 km. This produced a regional dataset that incorporated periods between 1980 and 2000 and 2076 to 2096. Results show that dynamic downscaling significantly improves the simulation of temperature and precipitation across CA compared to General Circulation Models (GCMs) and other Regional Climate Models (RCMs) due to better representation of topography and related meteorological fields. Our analysis shows that there will be a significant warming trend in Central Asia with a projected increase of 6°C under the Shared Socioeconomic Pathway (SSP) scenario SSP5-8.5 from 2076 to 2096. Pronounced warming is detected over mountainous areas of CA from autumn to spring, which can be explained by the snow-albedo feedback. Precipitation increases are projected from winter to spring and decreases are projected from summer to autumn.

Available in English

Download the article (eng)

For citation: Isaev, E., Murata, A., Fukui, Sh.,Sidle, R. (2024). High-resolution dynamic downscaling of historical and future climate projections over Central Asia. Central Asian Journal of Water Research,  10(1), 91-114. https://doi.org/10.29258/CAJWR/2024-R1.v10-1/91-114.eng

References

Aitaliev, A., Sakyev, D., Nazarkulov, K., Amanova, M., Brejneva, V., Spektorenko, N., Aidaraliev, N., Sataev, S., Jumanazarov, A., & Ymanbekov, K. (2020). Atlas of natural and man-made hazards on the territory of the Kyrgyz Republic. Ministry Emergency Situations Ministry. Kyrgyz Republic. https://mchs.gov.kg/ru/atlas/

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., … Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), 5109. https://doi.org/10.1029/2005JD006290

Bernauer, T., & Siegfried, T. (2012). Climate change and international water conflict in Central Asia. Http://Dx.Doi.Org/10.1177/0022343311425843, 49(1), 227–239. https://doi.org/10.1177/0022343311425843

Bruyère, C. L., Done, J. M., Holland, G. J., & Fredrick, S. (2014). Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dynamics, 43, 1847–1856. https://doi.org/10.1007/s00382-013-2011-6

Chang, S., Isaev, E., Chen, H., Wu, B., Meng, J., Yan, N., & Ma, Z. (2024). Exploring the Linkages between Different Types of Drought and Their Impacts on Crop Production in Kyrgyzstan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2024.3359429

CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate Hazards Center – UC Santa Barbara. (2022). https://www.chc.ucsb.edu/data/chirps

CMIP5 Data Search | CMIP5 | ESGF-CoG. (2022). https://esgf-node.llnl.gov/search/cmip5/

cmip6 Data Search | cmip6 | ESGF-CoG. (2022). https://esgf-node.llnl.gov/search/cmip6/

CORDEX-DKRZ Data Search | CORDEX-DKRZ | ESGF-CoG. (2022). https://esgf-data.dkrz.de/search/cordex-dkrz/

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2015 2:1, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66

Gulakhmadov, A., Chen, X., Gulahmadov, N., Liu, T., Anjum, M. N., & Rizwan, M. (2020). Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water 2020, Vol. 12, Page 1426, 12(5), 1426. https://doi.org/10.3390/W12051426

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 2020 7:1, 7(1), 1–18. https://doi.org/10.1038/s41597-020-0453-3

Hirai, M., & Oh’izumi, M. (2004). Development of a new landsurface model for JMA-GSM. Development of a New Landsurface Model for JMA-GSM. Extended Abstract of 20th Conference on Weather Analysis and Forecasting/16th Conference on NWP. P2.22.

Huang, A., Zhou, Y., Zhang, Y., Huang, D., Zhao, Y., & Wu, H. (2014). Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. Journal of Climate, 27(17), 6627–6646. https://doi.org/10.1175/JCLI-D-14-00070.1

Iles, C. E., Vautard, R., Strachan, J., Joussaume, S., Eggen, B. R., & Hewitt, C. D. (2020). The benefits of increasing resolution in global and regional climate simulations for European climate extremes. Geoscientific Model Development, 13(11), 5583–5607. https://doi.org/10.5194/GMD-13-5583-2020

Immerzeel, W. W., Van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the asian water towers. Science, 328(5984), 1382–1385. https://doi.org/10.1126/SCIENCE.1183188/SUPPL_FILE/IMMERZEEL.SOM.PDF

Isaev, E., Ajikeev, B., Shamyrkanov, U., Kalnur, K., Maisalbek, K., & Sidle, R. C. (2022). Impact of Climate Change and Air Pollution Forecasting Using Machine Learning Techniques in Bishkek. Aerosol and Air Quality Research, 22(3), 210336. https://doi.org/10.4209/AAQR.210336

Isaev, E., Ermanova, M., Sidle, R. C., Zaginaev, V., Kulikov, M., & Chontoev, D. (2022). Reconstruction of Hydrometeorological Data Using Dendrochronology and Machine Learning Approaches to Bias-Correct Climate Models in Northern Tien Shan, Kyrgyzstan. Water, 14(15), 2297. https://doi.org/10.3390/W14152297

Isaev, E. K., Aniskina, O. G., & Mostamandi, S. V. (2017). Investigation of sensitivity of the hydrodynamic modeling in an area with difficult terrain to the parameters of the planetary boundary layer. Works of Voeikov Main Geophysical Observatory, 584, 123–142. https://www.researchgate.net/publication/339042796_Investigation_of_sensitivity_of_the_hydrodynamic_modeling_in_an_area_with_difficult_terrain_to_the_parameters_of_the_planetary_boundary_layer

Isaev, E., Kulikov, M., Shibkov, E., & Sidle, R. C. (2022). Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan. Https://Doi.Org/10.1117/1.JRS.17.022204, 17(2), 022204. https://doi.org/10.1117/1.JRS.17.022204

Isaev, E., & Omurzakova, S. (2019). On the possibility of drought detection and modeling in Kyrgyzstan (in Russian). Bulletin of the Kyrgyz- Russian Slavic University, 11, 172–176.

Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández, J., Frías, M. D., Manzanas, R., San-Martín, D., Cimadevilla, E., Cofiño, A. S., & Gutiérrez, J. M. (2019). The R-based climate4R open framework for reproducible climate data access and post-processing. Environmental Modelling & Software, 111, 2–54. https://doi.org/https://doi.org/10.1016/j.envsoft.2018.09.009

Jiang, J., Zhou, T., Chen, X., & Zhang, L. (2020). Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters, 15(5). https://doi.org/10.1088/1748-9326/AB7D03

Kain, J., & Fritsch, M. (1990). A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization . Journal of the Atmospheric Sciences, 47(23), 2784–2802. https://journals.ametsoc.org/view/journals/atsc/47/23/1520-0469_1990_047_2784_aodepm_2_0_co_2.xml

Kaplina, A., Olofinskaya, N., Kozomara, M., & Mills Janine, Twymanand Selenge, S. (2018). Climate Change adaptation in Europe and Central asia: Adapting to a changing climate for resilient development. https://www.adaptation-undp.org/sites/default/files/resources/climate_change_adaptation_in_europe_and_central_asia.pdf

Kastridis, A., Stathis, D., Sapountzis, M., & Theodosiou, G. (2022). Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, Vol. 11, Page 911, 11(6), 911. https://doi.org/10.3390/LAND11060911

Kida, H., Koide, T., Sasaki, H., & Chiba, M. (1991). A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723–728.

Kitagawa, H. (2000). Radiation processes. Separate Volume of Annual Report of NPD, 46, 16-31 (in Japanese).

Li, J., Yu, R., Yuan, W., Chen, H., Sun, W., & Zhang, Y. (2015). Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J. Adv. Model. Earth Syst., 7, 774–790. https://doi.org/10.1002/2014MS000414

Li, L.-L., Li, J., & Yu, R. (2022). Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia. Advances in Climate Change Research, 13(1), 1–13. https://doi.org/https://doi.org/10.1016/j.accre.2021.09.009

Lin, Y. H., & Farley, R. D. (1983). Bulk parameterization of the snow field in a cloud model. J.Clim. Appl. Meteor., 22, 1065–1092.

Luo, Y., Wang, X., Piao, S., Sun, L., Ciais, P., Zhang, Y., Ma, C., Gan, R., & He, C. (2018). Contrasting streamflow regimes induced by melting glaciers across the Tien Shan – Pamir – North Karakoram. Scientific Reports 2018 8:1, 8(1), 1–9. https://doi.org/10.1038/s41598-018-34829-2

Manandhar, S., Xenarios, S., Schmidt-Vogt, D., Hergarten, C., & Foggin, M. (2018). Climate Vulnerability & Adaptive Capacity of Mountain Societies in Central Asia. https://ucentralasia.org/media/wygpwq22/web-no3-msri-research-paper.pdf

Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., & Kitoh, A. (2012). Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. Journal of the Meteorological Society of Japan. Ser. II, 90A(A), 233–258. https://doi.org/10.2151/JMSJ.2012-A12

Murata, A., Sasaki, H., Kawase, H., & Nosaka, M. (2016). Evaluation of precipitation over an oceanic region of Japan in convection-permitting regional climate model simulations. Climate Dynamics 2016 48:5, 48(5), 1779–1792. https://doi.org/10.1007/S00382-016-3172-X

Murata, A., Sasaki, H., Kawase, H., Nosaka, M., Aoyagi, T., Oh’izumi, M., Seino, N., Shido, F., Hibino, K., Ishihara, K., Murai, H., Yasui, S., Wakamatsu, S., & Takayabu, I. (2017). Projection of Future Climate Change over Japan in Ensemble Simulations Using a Convection-Permitting Regional Climate Model with Urban Canopy. SOLA, 13, 219–223. https://doi.org/10.2151/SOLA.2017-040

Muratalieva, N. (2022). Climate change in CA. CABAR.Asia. https://cabar.asia/ru/izmenenie-klimata-v-tsentralnoj-azii-tochka-nevozvrata-projdena

Nakanishi, M., & Niino, H. (2004). An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound. Layer Meteor., 112, 1–31.

Nakano, M., Kato, T., Hayashi, S., Kanada, S., Yamada, Y., & Kurihara, K. (2012). Development of a 5-km-Mesh Cloud-System-Resolving Regional Climate Model at the Meteorological Research Institute. Journal of the Meteorological Society of Japan. Ser. II, 90A(A), 339–350. https://doi.org/10.2151/JMSJ.2012-A19

Nowak, A., Nowak, S., Nobis, M., & Nobis, A. (2016). Vegetation of screes of the montane and colline zones in the Pamir-Alai Mts in Tajikistan (Middle Asia). Tuexenia, 36, 223–248. https://doi.org/10.14471/2016.36.001

Oh’izumi, M. (2014). Introduction of PBL schemes to iSiB submodel in NHRCM. Proc. of the Fall Conference of Meteor. Soc. of Japan (in Japanese), 172.

Ozturk, T., Turp, M. T., Türkeş, M., & Kurnaz, M. L. (2017). Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5. Atmospheric Research, 183, 296–307. https://doi.org/10.1016/J.ATMOSRES.2016.09.008

Pachauri, R.K., Meyer, L. A. (2014). IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the In-tergovernmental Panel on Climate Change;

Park, S., Lim, C. H., Kim, S. J., Isaev, E., Choi, S. E., Lee, S. D., & Lee, W. K. (2021). Assessing climate change impact on cropland suitability in kyrgyzstan: Where are potential high-quality cropland and the way to the future. Agronomy, 11(8). https://doi.org/10.3390/AGRONOMY11081490

Qiu, Y., Feng, J., Yan, Z., Wang, J., & Li, Z. (2021). High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Climate Dynamics 2021 58:3, 58(3), 777–791. https://doi.org/10.1007/S00382-021-05934-2

Qiu, Y., Hu, Q., & Zhang, C. (2017). WRF simulation and downscaling of local climate in Central Asia. International Journal of Climatology, 37, 513–528. https://doi.org/10.1002/JOC.5018

Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., Miller, K., Arsenault, K., Grubišić, V., Thompson, G., & Gutmann, E. (2011). High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate. Journal of Climate, 24(12), 3015–3048. https://doi.org/10.1175/2010JCLI3985.1

Russo, E., Kirchner, I., Pfahl, S., Schaap, M., & Cubasch, U. (2019). Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain. Geoscientific Model Development, 12(12), 5229–5249. https://doi.org/10.5194/GMD-12-5229-2019

Russo, E., Lund Sørland, S., Kirchner, I., Schaap, M., Raible, C. C., & Cubasch, U. (2020). Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain. Geoscientific Model Development, 13(11), 5779–5797. https://doi.org/10.5194/GMD-13-5779-2020

Saito, K., Fujita, T., Yamada, Y., Ishida, J. I., Kumagai, Y., Aranami, K., Ohmori, S., Nagasawa, R., Kumagai, S., Muroi, C., Kato, T., Eito, H., & Yamazaki, Y. (2006). The Operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134(4), 1266–1298. https://doi.org/10.1175/MWR3120.1

Saito, K., Ishida, J. I., Aranami, K., Hara, T., Segawa, T., Narita, M., & Honda, Y. (2007). Nonhydrostatic Atmospheric Models and Operational Development at JMA. Journal of the Meteorological Society of Japan. Ser. II, 85B, 271–304. https://doi.org/10.2151/JMSJ.85B.271

Sasaki, H., Kurihara, K., Takayabu, I., & Uchiyama, T. (2008). Preliminary Experiments of Reproducing the Present Climate Using the Non-hydrostatic Regional Climate Model. SOLA, 4, 25–28. https://doi.org/10.2151/SOLA.2008-007

Sasaki, H., Sato, Y., Adachi, K., & Kida, H. (2000). Performance and evaluation of the MRI regional climate model with the spectral boundary coupling method. J. Meteor. Soc. Japan, 78, 477–489.

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473–2493. https://doi.org/10.1002/JGRD.50188

Ta, Z., Yu, Y., Sun, L., Chen, X., Mu, G., & Yu, R. (2018). Assessment of precipitation simulations in Central Asia by CMIP5 climate models. Water (Switzerland), 10(11). https://doi.org/10.3390/W10111516

Vakulchuk, R., Daloz, A. S., Overland, I., Sagbakken, H. F., & Standal, K. (2022). A void in Central Asia research: climate change. Https://Doi.Org/10.1080/02634937.2022.2059447, 1–20. https://doi.org/10.1080/02634937.2022.2059447

Wang, Q., Yi, S., & Sun, W. (2017). Precipitation-driven glacier changes in the Pamir and Hindu Kush mountains. Geophysical Research Letters, 44(6), 2817–2824. https://doi.org/10.1002/2017GL072646

Wang, X., Chen, Y., Li, Z., Fang, G., Wang, F., & Hao, H. (2021). Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia. Hydrol. Earth Syst. Sci., 25, 3281–3299. https://doi.org/https://doi.org/10.5194/hess-25-3281-2021

Wang, Y., Feng, J., Luo, M., Wang, J., & Qiu, Y. (2020). Uncertainties in simulating central Asia: Sensitivity to physical parameterizations using Weather Research and Forecasting model. International Journal of Climatology, 40(14), 5813–5828. https://doi.org/10.1002/JOC.6567

Wehner, M. (2013). Methods of projecting future changes in extremes. Water Sci. Technol. Libr., 65, 223–237.

Yabu, S., Murai, S., & Kitagawa, H. (2005). Clear sky radiation scheme. Separate Volume of Annual Report of NPD, 51, 53-64 (in Japanese).

Yonehara, H., Tokuhiro, T., Nagasawa, R., Ujiie, M., Shimokobe, A., Nakagawa, M., Sekiguchi, R., Kanehama, T., Sato, H., & Saito, K. (2017). Upgrade of parameterization schemes in JMA’s operational global NWP model. In WGNE Research Activities in Atmospheric and Oceanic Modelling (pp. 17–18). CAS/JSC Working Group on Numerical Experimentation.

Zeng, X. M., Wang, M., Zhang, Y., Wang, Y., & Zheng, Y. (2016). Assessing the Effects of Spatial Resolution on Regional Climate Model Simulated Summer Temperature and Precipitation in China: A Case Study. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/7639567

Zhu, X., Wei, Z., Dong, W., Ji, Z., Wen, X., Zheng, Z., Yan, D., & Chen, D. (2020). Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over central Asia. Climate Dynamics, 54(7–8), 3279–3306. https://doi.org/10.1007/S00382-020-05170-0

Central Asia, dynamic downscaling, high-resolution dataset, regional climate projections

Leave a Reply