Studying the climate mitigation efficiency of various land-use systems by measuring greenhouse gas emissions

Kussainova M.D. a* , Toishimanov M.R. a , Tamenov T.B. a, Syzdyk A.B a, Jiquan Ch.b

a NJSC “Kazakh National Agrarian Research University”, Abay Ave., 8, Almaty, 050020, Republic of
Kazakhstan
b Michigan State University, East Lansing, Michigan 48823, USA

*Corresponding author e-mail:  maira.kussainova@kaznaru.edu.kz

Toishimanov M.: 507957@kaznaru.edu.kz; Tamenov T.: timur.tamenov@kaznaru.edu.kz; Syzdyk A.: Anel.Syzdyk@kaznaru.edu.kz; Jiquan Ch.: jqchen@msu.edu

https://doi.org/10.29258/CAJWR/2023-R1.v9-2/17-34.rus

Research article

Abstract

The relevance of the research lies in the application of the Li-8100 (Campbell Scientific) automated system for continuousmeasurement of CO2 emissions from soil corresponding to various cultivation techniques (no tillage, application of manure-based and mineral fertilizers) and various main crops (corn, wheat, rye) in Almaty Region. The article presents the field research data obtained in the foothill zone with the aim of assessing GHG emissions from arable light-dark chestnut soils while using different fertilizers, types of basic tillage, and crops. In accordance with the data presented, it can be argued that of the scientifically substantiated types of crops and soil cultivation methods studied within the framework of this research, all manure based options demonstrated high GHG emission values. The use of mineral fertilizers showed insignificant association between greenhouse gas emission reduc-tion and the no tillage option. Different crops showed varying degrees of GHG emission reduction depending on fertilizer application; yet, wheat responded most strongly due to additional biomass and yield growth. The research suggests the application of mineral fertilizers as a potential appropriate way to cut GHG emissions. However, further investigation is necessary to study the underlying mechanisms and processes influencing GHG and better understand the feedback effects in resource efficient (conservation) agriculture.

Available in Russian

Download the article (rus)

For citation: Kussainova, M., Toishimanov, M., Tamenov, T., Syzdyk, A., Jiquan, Ch., (2023). Izuchenie jeffektivnosti razlichnyh sistem zemlepol’zovanija dlja smjagchenija klimata posredstvom izmerenija jemissii parnikovyh gazov [Studying the climate mitigation efficiency of various land-use systems by measuring greenhouse gas emissions]. Central Asian Journal of Water Research,  9(2), 17-34. https://doi.org/10.29258/CAJWR/2023-R1.v9-2/17-34.rus [In Russian]

Reference

Allen, M., Antwi-Agyei, P., Aragon-Durand, F., Babiker, M., Bertoldi, P., Bind, M., Brown, S., Buckeridge, S., Camilloni, I., Cartwright, A., Cramer, W. (2019). Technical Summary: Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Data obrashcheniya: 15.10.20. https://www.ipcc.ch/site/assets/uploads/ sites/2/2018/12/SR15_TS_High_Res.pdf

Apreti, D.S., Dhar, S., Hongmin, D., Kimbal, B.A., Garg, A., Apadhiej, D. (2012). Seriya rukovodstva Tekhnologii dlya smyagcheniya posledstvij izmeneniya klimata. [Technologies for Climate Change Mitigation. TNA Guidebook Series. Agricultural Sector. UNEP-Riso Centre on Energy, Climate and Sustainable Development] // Sel’skohozyajstvennyj sektor. Centr YUNEP V Riso po voprosam energii klimata i ustojchivogo razvitiya – 166. [in Russian]

Bastaubaeva SH. O., Hidirov A.E., Bashabaeva B.M. i dr. (2021). Rekomendacii po provedeniyu vesenne-polevyh rabot na yugo-vostoke Kazahstana v 2021 godu. Almaty. [Guidelines for Conducting Spring Field Work in the Southeast of Kazakhstan in 2021] // LLP «Asyl kіtap (Baspa ujі)», 2021. – 28. [in Russian]

Sbornik otechestvennyh sortov i gibridov sel’skohozyajstvennyh kul’tur, ispol’zuemyh v Respublike Kazahstan [Collection of Domestic Varieties and Hybrids of Agricultural Crops Used in the Republic of Kazakhstan]// NAO NANOC. – Nur-Sultan: NAO «KazNARU», 2022. – 272. [in Russian]

GOST 26213-91. Pochvy Metody opredeleniya organicheskogo veshchestva Opredelenie legkogidrolizuemogo azota po metodu Tyurina i Kononovoj. Praktikum po agrohimii: pod redakciej Mineeva [Soils. Methods of determining organic matter. Determination of easily hydrolyzable nitrogen using the Tyurin and Kononova method. Practicum on Agrochemistry: edited by Mineev], 2001. [in Russian]

GOST 26951-86 Opredelenie nitratov ionometricheskim metodom [Determination of Nitrate Ions by Ionometric Method]. [in Russian]

GOST 26205-91. Opredelenie podvizhnogo fosfora i kaliya v karbonatnyh pochvah po metodu Machigina v modifikacii CINAO [Determination of mobile phosphorus and potassium in carbonate soils using the modified CINAO method according to Machigin]. [in Russian]

GOST 17.4.3.01-83. Ohrana prirody. Pochvy. Obshchie trebovaniya k otboru prob [Nature Conservation. Soils. General Requirements for Sample Selection]. [in Russian]

GOST 17.4.4.02-84. Ohrana prirody. Pochvy. Metody otbora i podgotovki prob dlya himicheskogo, bakteriologicheskogo, gel’mintologicheskogo analiza [Nature Conservation. Soils. Methods of Sampling and Preparation of Samples for Chemical, Bacteriological, and Helminthological Analysis]. [in Russian]

IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.

Iorganskij A.I., Esimbekov M.B., Tymakbaeva S.A., Rahmetzhanova A.A., Koptyleu M.A. (2017). Obespechennost’ pahotnyh pochv Ilijskogo Alatau podvizhnymi elementami mineral’nogo pitaniya i ee optimizaciya primeneniem mineral’nyh udobrenij pod vedushchie kul’tury regiona (na primere testovogo hozyajstva – TOO «Bajserke-Agro» Talgarskogo rajona Almatinskoj oblasti) [Fertility of mountain soils of the Ile-Alatau with mobile elements of mineral nutrition and its optimization using mineral fertilizers for the leading crops of the region (using the example of the experimental farm – LLP ‘Bayserke-Agro’ in Talgar District of Almaty Region)]. Pochvovedenie i agrohimiya. – Soil science and agrochemistry V4. – 2017. – 27-37. [in Russian]

Instruction manual for the LI-8100 and LI-8150 Automated Soil CO2 Flux System, LI-COR Biosciences, Lincoln, NE USA https://www.licor.com/env/support/LI-8100/home.html

Kahmark, K., N. Millar, and G. P. Robertson. (2020) Static chamber method for measuring greenhouse gas fluxes. KBS LTER Special Publication. – 15 p.

Kussainova M. D., Tamenov T. B., Tojshimanov M. R., Syzdyq А. B., Iskakova G., Nurgali N. D.Dinamicheskij monitoring NDVI v agronomicheskih ispytanijah agro kul’tur s ispol’zovaniem bespilotnogo letatel’nogo apparata [Dynamic monitoring of NDVI in agronomic testing of agro crops using an unmanned aerial vehicle]. № 2(117) (2023): Vestnik nauki “Kazahskogo agrotehnicheskogo issledovatel’skogo universiteta im S. Sejfullina” / Sel’skohozjajstvennye nauki 1 Chast’- Bulletin of science of Seifullin Kazakh agrotechnical research university/Agricultural sciences. DOI: https:// doi.org/10.51452/kazatu.2023.2(117).1386 [in Russian]

Metodicheskie ukazaniya po raschetu vybrosov parnikovyh gazov v atmosferu ot domashnego skota: vnutrennyaya fermentaciya i navoz [Guidelines for Calculating Greenhouse Gas Emissions into the Atmosphere from Domestic Livestock: Enteric Fermentation and Manure] (2010). 5/11/2010. https://online.zakon.kz/Document/?doc_id=30935916. [in Russian]

Romanovskaya A.A., Korotkov V.N., Polumieva P.D., Trunov A.A., Vertyankina V.Y., Karaban R.T. (2019). Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation. Mitigation and Adaptation Strategies for Global Change 25(8) DOI:10.1007/s11027-019-09885-2.

Springmann M., Clark M., Mason-D’Croz D., Wiebe K., Bodirsky B. L., Lassaletta L., de Vries W., Vermeulen S. J., Herrero M., Carlson K. M., Jonell M., Troell M., DeClerk F., Gordon L. J., Zurayk R., Scarborough P., Rayner M., Loken B., Fanzo J., Godfray H. C. J., Tilman D., Rockström J., Willet W. (2018). Options for keeping the food system within environmental limits. Nature. 562: 519–525 p.

ST RK 3477-2019 «Pochvy. Opredelenie gumusa po metodu I.V. Tyurina» [Soils. Determination of humus according to the method of I.V. Tyurin]. [in Russian]

Smagulova, S.D., Adil, J., Tanzharikova, A., & Imashev, A. (2017). The Economic Impact of the Energy and Agricultural Complex on Greenhouse Gas Emissions in Kazakhstan. International Journal of Energy Economics and Policy, 7(4), 252–259. Retrieved from https://www.econjournals.com/ index.php/ijeep/article/view/5412.

FAOSTAT, 2019. FAOSTAT Sel’skohozyajstvennyj dannye [Agricultural data]. http://faostat.fao.org/ faostat/collections?version=ext&hasbulk=0&subset=agriculture (Date of access: 21.10.2021). [in Russian]

agriculture, barley, corn, greenhouse gas (GHG) emissions, soil, winter wheat

Leave a Reply