Visible light photocatalytic degradation of HDPE microplastics using vanadium-doped titania

Esther Mbuci Kinyua a , George William Atwoki Nyakairu a*, Emmanuel Tebandeke a, Oghenekaro Nelson Odume b

a Makerere University, 7062 University Rd, Kampala, Uganda

b Rhodes University, Drosty Rd, Grahamstown, Makhanda, 6139, South Africa

Corresponding author e-mail:

Esther Mbuci Kinyua:; Emmanuel Tebandeke:; Oghenekaro Nelson Odume:


Efficient strategies are necessary to effectively remove microplastics (MPs), which are widely present in the environment. Among various techniques, photocatalysis using visible light has emerged as a promising ap-proach to tackle the growing concerns surrounding microplastic waste. This research explored the potential of vanadium-doped titanium oxide as a photocatalyst for degrading high-density polyethylene (HDPE) micro-plastics under visible light irradiation. Vanadium-doped titanium oxide photocatalyst was synthesized using the sol-gel method, and then characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy. The XRD analysis confirmed the formation of the anatase phase, while the SEM imaging provided valuable information on the catalyst’s morphology and elemental composition. The successful incorporation of vanadium ions into the structure was demonstrated by UV-visible spectrosco-py that revealed a redshift in the absorption edge. The vanadium-doped titanium oxide photocatalyst was em-ployed in the degradation of HDPE under visible light. The experimental results exhibited a significant reduc-tion in the mass of the plastic after 350 hours of illumination. V-TiO₂ achieved a maximum reduction of 5.7%, while TiO₂ nanoparticles showed only the 2% decrease. This study demonstrates the potential of V-TiO₂ as an efficient visible-light-driven photocatalyst for HDPE degradation, contributing to the mitigation of microplastics pollution in a sustainable manner.

Available in English

Download the article (eng)

For citation: Kinyua, E., Nyakairu, G., Tebandeke, E., Odume, O. (2024). Visible light photocatalytic degradation of HDPE microplastics using vanadium-doped titania. Central Asian Journal of Water Research,  10(1), 126-141.


Ali, S.S., Qazi, I.A., Arshad, M., Khan, Z., Voice, T. C. & Mehmood, C.T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes.  Environmental nanotechnology, monitoring & management, 5, 44-53;

Ariza-Tarazona, M.C., Villarreal-Chiu, J.F., Barbieri, V., Siligardi, C. & Cedillo-González, E.I. (2019).  New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor.  Ceramics International, 45(7), 9618-9624;

Baskar, A.V., Bolan, N., Hoang, S.A., Sooriyakumar, P., Kumar, M., Singh, L., Jasemizad, T., Padhye, L.P., Singh, G. & Vinu, A. (2022).  Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review.  Science of The Total Environment, 822, 153555;

Behera, M., Nayak, J., Banerjee, S., Chakrabortty, S. & Tripathy, S.K. (2021).  A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach.  Journal of Environmental Chemical Engineering, 9(4), 105277;

Bettinelli, M., Dallacasa, V., Falcomer, D., Fornasiero, P., Gombac, V., Montini, T., Romano, L. & Speghini, A. (2007).  Photocatalytic activity of TiO2 doped with boron and vanadium.  Journal of Hazardous Materials, 146(3), 529-534;

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L. & Suh, S. (2020).  Degradation rates of plastics in the environment.  ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511;

David, M., Prakash, L., Sangeetha, J., Naik, J., Thangadurai, D. & Thimmappa, S.C. (2021).  Degradation of plastics using nanomaterials.  Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 2139-2151;

De Yoreo, J. (2020).  A perspective on multistep pathways of nucleation.  In Crystallization via Nonclassical Pathways Volume 1: Nucleation, Assembly, Observation & Application (pp. 1-17).  ACS Publications;

Edo, C., Tamayo-Belda, M., Martínez-Campos, S., Martín-Betancor, K., González-Pleiter, M., Pulido-Reyes, G., García-Ruiz, C., Zapata, F., Leganés, F. & Fernández-Piñas, F. (2019).  Occurrence and identification of microplastics along a beach in the Biosphere Reserve of Lanzarote.  Marine pollution bulletin, 143, 220-227;

Gewert, B., Plassmann, M.M. & MacLeod, M. (2015).  Pathways for degradation of plastic polymers floating in the marine environment.  Environmental science: processes & impacts, 17(9), 1513-1521;

Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A.M. & Karuppuchamy, S. (2020).  Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications.  Journal of Alloys and Compounds, 828, 154281;

Laskar, N. & Kumar, U. (2019).  Plastics and microplastics: A threat to environment. Environmental technology & innovation, 14, 100352;

Lin, Y., Kouznetsova, T.B., Chang, C.C. & Craig, S.L. (2020).  Enhanced polymer mechanical degradation through mechanochemically unveiled lactonization.  Nature Communications, 11(1), 4987;

Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., Cao, Z. & Zhang, T. (2021).  A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms.  Environment International, 146, 106277;

Llorente-García, B.E., Hernández-López, J.M., Zaldívar-Cadena, A.A., Siligardi, C. & Cedillo-González, E.I. (2020).  First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N–TiO2 coating: effect of size and shape of microplastics.  Coatings, 10(7), 658;

Mahlambi, M.M., Ngila, C.J. & Mamba, B.B. (2015).  Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles — a review.  Journal of Nanomaterials,2015, 5-5;

Sajid, M., Ihsanullah, I., Khan, M.T. & Baig, N. (2022).  Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review.  Separation and Purification Technology, 122453;

Seck, E., Doña-Rodríguez, J.M., Melián, E.P., Fernández-Rodríguez, C., González-Díaz, O.M., Portillo-Carrizo, D. & Pérez-Peña, J. (2013).  Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis.  Journal of colloid and interface science, 400, 31-40;

Thomas, R.T. & Sandhyarani, N. (2013).  Enhancement in the photocatalytic degradation of low density polyethylene–TiO 2 nanocomposite films under solar irradiation.  RSC advances, 3(33), 14080-14087;

Wang, T. & Xu, T. (2017).  Effects of vanadium doping on microstructures and optical properties of TiO2.  Ceramics International, 43(1), 1558-1564;

Wang, Z., Liu, S., Cao, X., Wu, S., Liu, C., Li, G., Jiang, W., Wang, H., Wang, N. & Ding, W. (2020).  Preparation and characterization of TiO2 nanoparticles by two different precipitation methods.  Ceramics International, 46(10), 15333-15341;

Wu, S., Hu, H., Lin, Y., Zhang, J. & Hu, Y.H. (2020).  Visible light photocatalytic degradation of tetracycline over TiO2.  Chemical Engineering Journal, 382, 122842;

Yuan, Z., Nag, R. & Cummins, E. (2022).  Ranking of potential hazards from microplastics polymers in the marine environment.  Journal of Hazardous Materials, 429, 128399;

Zhu, T., Li, X., Zhu, X., Liu, B., Zhu, J. & Luo, J. (2023).  Critical review of catalysis-assisted nanofiltration for micropollutants removal: Catalytic coupled nanofiltration system vs catalytic nanofiltration membrane.  Critical Reviews in Environmental Science and Technology, 53(9), 1009-1031.

catalysis, degradation, HDPE, microplastic(s), photocatalyst, wastewater

Leave a Reply